- 中考数学真题汇编第2期03 一次方程、二元一次方程组 试卷 4 次下载
- 中考数学真题汇编第2期04 一次不等式 试卷 3 次下载
- 中考数学真题汇编第2期06 一次函数与反比例函数 试卷 3 次下载
- 中考数学真题汇编第2期07 二次函数 试卷 4 次下载
- 中考数学真题汇编第2期08 三角形 试卷 3 次下载
中考数学真题汇编第2期05 二次方程、分式方程
展开
数学
中考数学真题汇编第2期
专题05 二次方程、分式方程
一、单选题
1.(2023·山东聊城·统考中考真题)若关于x的分式方程的解为非负数,则m的取值范围是( )
A.且 B.且 C.且 D.且
2.(2023·四川·统考中考真题)近年来,我市大力发展交通,建成多条快速通道,小张开车从家到单位有两条路线可选择,路线a为全程10千米的普通道路,路线b包含快速通道,全程7千米,走路线b比路线a平均速度提高,时间节省10分钟,求走路线a和路线b的平均速度分别是多少?设走路线a的平均速度为x千米/小时,依题意,可列方程为( )
A. B.
C. D.
3.(2023·山东聊城·统考中考真题)若一元二次方程有实数解,则m的取值范围是( )
A. B. C.且 D.且
4.(2023·四川·统考中考真题)关于x的一元二次方程根的情况,下列说法中正确的是( )
A.有两个不相等的实数根 B.有两个相等的实数根
C.没有实数根 D.无法确定
5.(2023·广西·统考中考真题)据国家统计局发布的《2022年国民经济和社会发展统计公报》显示,2020年和2022年全国居民人均可支配收入分别为3.2万元和3.7万元.设2020年至2022年全国居民人均可支配收入的年平均增长率为x,依题意可列方程为( )
A. B.
C. D.
6.(2023·四川广安·统考中考真题)为了降低成本,某出租车公司实施了“油改气”措施.如图,分别表示燃油汽车和燃气汽车所需费用(单位:元)与行驶路程(单位:千米)的关系,已知燃油汽车每千米所需的费用比燃气汽车每千米所需的费用的3倍少0.1元,设燃气汽车每千米所需的费用为元,则可列方程为( )
A. B. C. D.
7.(2023·湖南·统考中考真题)将关于x的分式方程去分母可得( )
A. B. C. D.
8.(2023·湖北随州·统考中考真题)甲、乙两个工程队共同修一条道路,其中甲工程队需要修9千米,乙工程队需要修12千米.已知乙工程队每个月比甲工程队多修1千米,最终用的时间比甲工程队少半个月.若设甲工程队每个月修x千米,则可列出方程为( )
A. B. C. D.
9.(2023·湖北十堰·统考中考真题)为了落实“双减”政策,进一步丰富文体活动,学校准备购进一批篮球和足球,已知每个篮球的价格比每个足球的价格多20元,用1500元购进篮球的数量比用800元购进足球的数量多5个,如果设每个足球的价格为x元,那么可列方程为( )
A. B. C. D.
10.(2023·甘肃武威·统考中考真题)方程的解为( )
A. B. C. D.
11.(2023·四川达州·统考中考真题)某镇的“脆红李”深受广大市民的喜爱,也是馈赠亲友的尚佳礼品,首批“脆红李”成熟后,当地某电商用12000元购进这种“脆红李”进行销售,面市后,线上订单猛增供不应求,该电商又用11000元购进第二批这种“脆红李”,由于更多“脆红李”成熟,单价比第一批每件便宜了5元,但数量比第一批多购进了40件,求购进的第一批“脆红李”的单价.设购进的第一批“脆红李”的单价为x元/件,根据题意可列方程为( )
A. B.
C. D.
12.(2023·云南·统考中考真题)阅读,正如一束阳光.孩子们无论在哪儿,都可以感受到阳光的照耀,都可以通过阅读触及更广阔的世界.某区教育体育局向全区中小学生推出“童心读书会”的分享活动.甲、乙两同学分别从距离活动地点800米和400米的两地同时出发,参加分享活动.甲同学的速度是乙同学的速度的1.2倍,乙同学比甲同学提前4分钟到达活动地点.若设乙同学的速度是米/分,则下列方程正确的是( )
A. B. C. D.
13.(2023·四川宜宾·统考中考真题)分式方程的解为( )
A.2 B.3 C.4 D.5
二、填空题
14.(2023·上海·统考中考真题)已知关于的方程,则________
15.(2023·重庆·统考中考真题)为了加快数字化城市建设,某市计划新建一批智能充电桩,第一个月新建了301个充电桩,第三个月新建了500个充电桩,设该市新建智能充电桩个数的月平均增长率为,根据题意,请列出方程________.
16.(2023·湖南岳阳·统考中考真题)已知关于的一元二次方程有两个不相等的实数根,且,则实数_________.
17.(2023·湖南·统考中考真题)已知关于x的方程的一个根是,则它的另一个根是________.
18.(2023·湖北黄冈·统考中考真题)已知一元二次方程的两个实数根为,若,则实数_____________.
19.(2023·湖北武汉·统考中考真题)抛物线(是常数,)经过三点,且.下列四个结论:
①;
②;
③当时,若点在该抛物线上,则;
④若关于的一元二次方程有两个相等的实数根,则.
其中正确的是________(填写序号).
20.(2023·湖北宜昌·统考中考真题)已知、是方程的两根,则代数式的值为_________.
21.(2023·江苏连云港·统考中考真题)若(为实数),则的最小值为__________.
22.(2023·甘肃武威·统考中考真题)关于的一元二次方程有两个不相等的实数根,则________(写出一个满足条件的值).
23.(2023·四川遂宁·统考中考真题)若a、b是一元二次方程的两个实数根,则代数式的值为_________.
24.(2023·四川内江·统考中考真题)已知a、b是方程的两根,则___________.
25.(2023·湖南怀化·统考中考真题)已知关于x的一元二次方程的一个根为,则m的值为__________,另一个根为__________.
26.(2023·湖南·统考中考真题)某校截止到年底,校园绿化面积为平方米.为美化环境,该校计划年底绿化面积达到平方米.利用方程想想,设这两年绿化面积的年平均增长率为,则依题意列方程为__________.
三、解答题
27.(2023·湖北荆州·统考中考真题)已知关于的一元二次方程有两个不相等的实数根.
(1)求的取值范围;
(2)当时,用配方法解方程.
28.(2023·浙江杭州·统考中考真题)设一元二次方程.在下面的四组条件中选择其中一组的值,使这个方程有两个不相等的实数根,并解这个方程.
①;②;③;④.
注:如果选择多组条件分别作答,按第一个解答计分.
29.(2023·湖南郴州·统考中考真题)随旅游旺季的到来,某景区游客人数逐月增加,2月份游客人数为1.6万人,4月份游客人数为2.5万人.
(1)求这两个月中该景区游客人数的月平均增长率;
(2)预计5月份该景区游客人数会继续增长,但增长率不会超过前两个月的月平均增长率.已知该景区5月1日至5月21日已接待游客2.125万人,则5月份后10天日均接待游客人数最多是多少万人?
30.(2023·安徽·统考中考真题)【观察思考】
【规律发现】
请用含的式子填空:
(1)第个图案中“”的个数为 ;
(2)第个图案中“★”的个数可表示为,第个图案中“★”的个数可表示为,第个图案中“★”的个数可表示为,第个图案中“★”的个数可表示为,……,第个图案中“★”的个数可表示为______________.
【规律应用】
(3)结合图案中“★”的排列方式及上述规律,求正整数,使得连续的正整数之和等于第个图案中“”的个数的倍.
31.(2023·湖南岳阳·统考中考真题)水碧万物生,岳阳龙虾好.小龙虾产业已经成为岳阳乡村振兴的“闪亮名片”.已知翠翠家去年龙虾的总产量是,今年龙虾的总产量是,且去年与今年的养殖面积相同,平均亩产量去年比今年少,求今年龙虾的平均亩产量.
32.(2023·湖北荆州·统考中考真题)荆州古城旁“荆街”某商铺打算购进,两种文创饰品对游客销售.已知1400元采购种的件数是630元采购种件数的2倍,种的进价比种的进价每件多1元,两种饰品的售价均为每件15元;计划采购这两种饰品共600件,采购种的件数不低于390件,不超过种件数的4倍.
(1)求,饰品每件的进价分别为多少元?
(2)若采购这两种饰品只有一种情况可优惠,即一次性采购种超过150件时,种超过的部分按进价打6折.设购进种饰品件,
①求的取值范围;
②设计能让这次采购的饰品获利最大的方案,并求出最大利润.
33.(2023·山西·统考中考真题)解方程:.
34.(2023·广西·统考中考真题)解分式方程:.
35.(2023·浙江嘉兴·统考中考真题)小丁和小迪分别解方程过程如下:
小丁:
解:去分母,得
去括号,得
合并同类项,得
解得
∴原方程的解是
小迪:
解:去分母,得
去括号得
合并同类项得
解得
经检验,是方程的增根,原方程无解
你认为小丁和小迪的解法是否正确?若正确,请在框内打“√”;若错误,请在框内打“×”,并写出你的解答过程.
36.(2023·四川乐山·统考中考真题)为了践行习近平总书记提出的“绿水青山就是金山银山”的发展理念,某地计划在规定时间内种植梨树棵.开始种植时,由于志愿者的加入,实际每天种植梨树的数量比原计划增加了,结果提前2天完成任务.问原计划每天种植梨树多少棵?
37.(2023·四川泸州·统考中考真题)端午节是中国传统节日,人们有吃粽子的习俗.今年端午节来临之际,某商场预测A粽子能够畅销.根据预测,每千克A粽子节前的进价比节后多2元,节前用240元购进A粽子的数量比节后用相同金额购进的数量少4千克.根据以上信息,解答下列问题:
(1)该商场节后每千克A粽子的进价是多少元?
(2)如果该商场在节前和节后共购进A粽子400千克,且总费用不超过4600元,并按照节前每千克20元,节后每千克16元全部售出,那么该商场节前购进多少千克A粽子获得利润最大?最大利润是多少?
38.(2023·江苏连云港·统考中考真题)解方程:.
参考答案
1.A
2.A
3.D
4.C
5.B
6.D
7.A
8.A
9.A
10.A
11.A
12.D
13.C
14.18
15.
16.3
17.5
18.
19.②③④
20.
21.
22.(答案不唯一,合理即可)
23.2
24.
25.
26.
27.(1)解:依题意得:,
解得且;
(2)解:当时,原方程变为:,
则有:,
,
,
方程的根为,.
28.解:中,
①时,,方程有两个相等的实数根;
②时,,方程有两个不相等的实数根;
③时,,方程有两个不相等的实数根;
④时,,方程没有实数根;
因此可选择②或③.
选择②时,
,
,
,
,;
选择③时,
,
,
,
,.
29.(1)解:设这两个月中该景区游客人数的月平均增长率为,由题意,得:
,
解得:(负值已舍掉);
答:这两个月中该景区游客人数的月平均增长率为;
(2)设5月份后10天日均接待游客人数是y万人,由题意,得:
,
解得:;
∴5月份后10天日均接待游客人数最多是1万人.
30.(1)解:第1个图案中有个,
第2个图案中有个,
第3个图案中有个,
第4个图案中有个,
……
∴第个图案中有个,
故答案为:.
(2)第1个图案中“★”的个数可表示为,
第2个图案中“★”的个数可表示为,
第3个图案中“★”的个数可表示为,
第4个图案中“★”的个数可表示为,……,
第n个图案中“★”的个数可表示为,
(3)解:依题意,,
第个图案中有个,
∴,
解得:(舍去)或.
31.解:设今年龙虾的平均亩产量是x,则去年龙虾的平均亩产量是,
由题意得,,
解得,
经检验,是分式方程的解且符合题意,
答:今年龙虾的平均亩产量.
32.(1)设种饰品每件的进价为元,则B种饰品每件的进价为元.
由题意得:,解得:,
经检验,是所列方程的根,且符合题意.
种饰品每件进价为10元,B种饰品每件进价为9元.
(2)①根据题意得:,
解得:且为整数;
②设采购种饰品件时的总利润为元.
当时,,
即,
,
随的增大而减小.
当时,有最大值3480.
当时,
整理得:,
,
随的增大而增大.
当时,有最大值3630.
,
的最大值为3630,此时.
即当采购种饰品210件,B种饰品390件时,商铺获利最大,最大利润为3630元.
33.解:原方程可化为.
方程两边同乘,得.
解得.
检验:当时,.
∴原方程的解是.
34.解:
去分母得,
移项,合并得,
检验:当时,,
所以原分式方程的解为.
35.小丁和小迪的解法都错误;
解:去分母,得,
去括号,得,
解得,,
经检验:是方程的解.
36.解:设原计划每天种植梨树x棵
由题可知:
解得:
经检验:是原方程的根,且符合题意.
答:原计划每天种植梨树500棵.
37.(1)解:设节后每千克A粽子的进价为x元,则每千克A粽子节前的进价为元,根据题意得:
,
解得:,,
经检验,都是原方程的解,但不符合实际舍去,
答:节后每千克A粽子的进价为10元.
(2)解:设该商场节前购进m千克A粽子,则节后购进千克A粽子,获得的利润为w元,根据题意得:
,
∵,
∴,
∵,
∴w随m的增大而增大,
∴当时,w取最大值,且最大值为:,
答:节前购进300千克A粽子获得利润最大,最大利润为3000元.
38.解:方程两边同时乘以x﹣2得,
,
解得:
检验:当时,,
∴是原方程的解,
∴原方程的解为x=4.
中考数学真题汇编第1期05 二次方程、分式方程、无理方程: 这是一份中考数学真题汇编第1期05 二次方程、分式方程、无理方程,共12页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
(2020-2022)中考数学真题分类汇编专题05 一元二次方程(教师版): 这是一份(2020-2022)中考数学真题分类汇编专题05 一元二次方程(教师版),共63页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
2022年中考数学真题分类汇编:05 分式: 这是一份2022年中考数学真题分类汇编:05 分式,共6页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。