所属成套资源:全国分地区2021-2023三年中考数学真题分类汇编(按题型难易度分层分类)
浙江省嘉兴市、舟山市2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类
展开这是一份浙江省嘉兴市、舟山市2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类,共24页。
浙江省嘉兴市、舟山市2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类
一.规律型:数字的变化类(共1小题)
1.(2022•嘉兴)设是一个两位数,其中a是十位上的数字(1≤a≤9).例如,当a=4时,表示的两位数是45.
(1)尝试:
①当a=1时,152=225=1×2×100+25;
②当a=2时,252=625=2×3×100+25;
③当a=3时,352=1225= ;
……
(2)归纳:与100a(a+1)+25有怎样的大小关系?试说明理由.
(3)运用:若与100a的差为2525,求a的值.
二.二次函数综合题(共3小题)
2.(2022•舟山)已知抛物线L1:y=a(x+1)2﹣4(a≠0)经过点A(1,0).
(1)求抛物线L1的函数表达式.
(2)将抛物线L1向上平移m(m>0)个单位得到抛物线L2.若抛物线L2的顶点关于坐标原点O的对称点在抛物线L1上,求m的值.
(3)把抛物线L1向右平移n(n>0)个单位得到抛物线L3.已知点P(8﹣t,s),Q(t﹣4,r)都在抛物线L3上,若当t>6时,都有s>r,求n的取值范围.
3.(2022•嘉兴)已知抛物线L1:y=a(x+1)2﹣4(a≠0)经过点A(1,0).
(1)求抛物线L1的函数表达式.
(2)将抛物线L1向上平移m(m>0)个单位得到抛物线L2.若抛物线L2的顶点关于坐标原点O的对称点在抛物线L1上,求m的值.
(3)把抛物线L1向右平移n(n>0)个单位得到抛物线L3,若点B(1,y1),C(3,y2)在抛物线L3上,且y1>y2,求n的取值范围.
4.(2023•浙江)在二次函数y=x2﹣2tx+3(t>0)中.
(1)若它的图象过点(2,1),则t的值为多少?
(2)当0≤x≤3时,y的最小值为﹣2,求出t的值;
(3)如果A(m﹣2,a),B(4,b),C(m,a)都在这个二次函数的图象上,且a<b<3.求m的取值范围.
三.三角形综合题(共1小题)
5.(2022•嘉兴)小东在做九上课本123页习题:“1:也是一个很有趣的比.已知线段AB(如图1),用直尺和圆规作AB上的一点P,使AP:AB=1:.”小东的作法是:如图2,以AB为斜边作等腰直角三角形ABC,再以点A为圆心,AC长为半径作弧,交线段AB于点P,点P即为所求作的点.小东称点P为线段AB的“趣点”.
(1)你赞同他的作法吗?请说明理由.
(2)小东在此基础上进行了如下操作和探究:连结CP,点D为线段AC上的动点,点E在AB的上方,构造△DPE,使得△DPE∽△CPB.
①如图3,当点D运动到点A时,求∠CPE的度数.
②如图4,DE分别交CP,CB于点M,N,当点D为线段AC的“趣点”时(CD<AD),猜想:点N是否为线段ME的“趣点”?并说明理由.
四.菱形的性质(共1小题)
6.(2023•浙江)如图,在菱形ABCD中,AE⊥BC于点E,AF⊥CD于点F,连结EF.
(1)求证:AE=AF;
(2)若∠B=60°,求∠AEF的度数.
五.四边形综合题(共1小题)
7.(2021•浙江)小王在学习浙教版九上课本第72页例2后,进一步开展探究活动:将一个矩形ABCD绕点A顺时针旋转α(0°<α≤90°),得到矩形AB′C′D′,连结BD.
[探究1]如图1,当α=90°时,点C′恰好在DB延长线上.若AB=1,求BC的长.
[探究2]如图2,连结AC′,过点D′作D′M∥AC′交BD于点M.线段D′M与DM相等吗?请说明理由.
[探究3]在探究2的条件下,射线DB分别交AD′,AC′于点P,N(如图3),发现线段DN,MN,PN存在一定的数量关系,请写出这个关系式,并加以证明.
六.圆的综合题(共2小题)
8.(2023•浙江)已知,AB是半径为1的⊙O的弦,⊙O的另一条弦CD满足CD=AB,且CD⊥AB于点H(其中点H在圆内,且AH>BH,CH>DH).
(1)在图1中用尺规作出弦CD与点H(不写作法,保留作图痕迹);
(2)连结AD,猜想:当弦AB的长度发生变化时,线段AD的长度是否变化?若发生变化,说明理由;若不变,求出AD的长度;
(3)如图2,延长AH至点F,使得HF=AH,连结CF,∠HCF的平分线CP交AD的延长线于点P,点M为AP的中点,连结HM.若PD=AD,求证:MH⊥CP.
9.(2022•舟山)如图1,在正方形ABCD中,点F,H分别在边AD,AB上,连结AC,FH交于点E,已知CF=CH.
(1)线段AC与FH垂直吗?请说明理由.
(2)如图2,过点A,H,F的圆交CF于点P,连结PH交AC于点K.求证:=.
(3)如图3,在(2)的条件下,当点K是线段AC的中点时,求的值.
七.解直角三角形的应用(共1小题)
10.(2022•嘉兴)小华将一张纸对折后做成的纸飞机如图1,纸飞机机尾的横截面是一个轴对称图形,其示意图如图2,已知AD=BE=10cm,CD=CE=5cm,AD⊥CD,BE⊥CE,∠DCE=40°.
(1)连结DE,求线段DE的长.
(2)求点A,B之间的距离.
(结果精确到0.1cm.参考数据:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36,sin40°≈0.64,cos40°≈0.77,tan40°≈0.84)
八.解直角三角形的应用-仰角俯角问题(共1小题)
11.(2023•浙江)图1是某住宅单元楼的人脸识别系统(整个头部需在摄像头视角范围内才能被识别),其示意图如图2,摄像头A的仰角、俯角均为15°,摄像头高度OA=160cm,识别的最远水平距离OB=150cm.
(1)身高208cm的小杜,头部高度为26cm,他站在离摄像头水平距离130cm的点C处,请问小杜最少需要下蹲多少厘米才能被识别?
(2)身高120cm的小若,头部高度为15cm,踮起脚尖可以增高3cm,但仍无法被识别,社区及时将摄像头的仰角、俯角都调整为20°(如图3),此时小若能被识别吗?请计算说明.
(精确到0.1cm,参考数据:sin15°≈0.26,cos15°≈0.97,tan15°≈0.27,sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)
浙江省嘉兴市、舟山市2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类
参考答案与试题解析
一.规律型:数字的变化类(共1小题)
1.(2022•嘉兴)设是一个两位数,其中a是十位上的数字(1≤a≤9).例如,当a=4时,表示的两位数是45.
(1)尝试:
①当a=1时,152=225=1×2×100+25;
②当a=2时,252=625=2×3×100+25;
③当a=3时,352=1225= 3×4×100+25 ;
……
(2)归纳:与100a(a+1)+25有怎样的大小关系?试说明理由.
(3)运用:若与100a的差为2525,求a的值.
【答案】(1)3×4×100+25;
(2)=100a(a+1)+25,理由见解答过程;
(3)5.
【解答】解:(1)∵①当a=1时,152=225=1×2×100+25;②当a=2时,252=625=2×3×100+25;
∴③当a=3时,352=1225=3×4×100+25,
故答案为:3×4×100+25;
(2)=100a(a+1)+25,理由如下:
=(10a+5)(10a+5)=100a2+100a+25=100a(a+1)+25;
(3)由题知,﹣100a=2525,
即100a2+100a+25﹣100a=2525,
解得a=5或﹣5(舍去),
∴a的值为5.
二.二次函数综合题(共3小题)
2.(2022•舟山)已知抛物线L1:y=a(x+1)2﹣4(a≠0)经过点A(1,0).
(1)求抛物线L1的函数表达式.
(2)将抛物线L1向上平移m(m>0)个单位得到抛物线L2.若抛物线L2的顶点关于坐标原点O的对称点在抛物线L1上,求m的值.
(3)把抛物线L1向右平移n(n>0)个单位得到抛物线L3.已知点P(8﹣t,s),Q(t﹣4,r)都在抛物线L3上,若当t>6时,都有s>r,求n的取值范围.
【答案】(1)y=x2+2x﹣3;
(2)m的值为4;
(3)n的取值范围是n>3.
【解答】解:(1)把A(1,0)代入y=a(x+1)2﹣4得:
a(1+1)2﹣4=0,
解得a=1,
∴y=(x+1)2﹣4=x2+2x﹣3;
答:抛物线L1的函数表达式为y=x2+2x﹣3;
(2)抛物线L1:y=(x+1)2﹣4的顶点为(﹣1,﹣4),
将抛物线L1向上平移m(m>0)个单位得到抛物线L2,则抛物线L2的顶点为(﹣1,﹣4+m),
而(﹣1,﹣4+m)关于原点的对称点为(1,4﹣m),
把(1,4﹣m)代入y=x2+2x﹣3得:
12+2×1﹣3=4﹣m,
解得m=4,
答:m的值为4;
(3)把抛物线L1向右平移n(n>0)个单位得到抛物线L3,抛物线L3解析式为y=(x﹣n+1)2﹣4,
∵点P(8﹣t,s),Q(t﹣4,r)都在抛物线L3上,
∴s=(8﹣t﹣n+1)2﹣4=(9﹣t﹣n)2﹣4,
r=(t﹣4﹣n+1)2﹣4=(t﹣n﹣3)2﹣4,
∵当t>6时,s>r,
∴s﹣r>0,
∴[(9﹣t﹣n)2﹣4]﹣[(t﹣n﹣3)2﹣4]>0,
整理变形得:(9﹣t﹣n)2﹣(t﹣n﹣3)2>0,
(9﹣t﹣n+t﹣n﹣3)(9﹣t﹣n﹣t+n+3)>0,
(6﹣2n)(12﹣2t)>0,
∵t>6,
∴12﹣2t<0,
∴6﹣2n<0,
解得n>3,
∴n的取值范围是n>3.
3.(2022•嘉兴)已知抛物线L1:y=a(x+1)2﹣4(a≠0)经过点A(1,0).
(1)求抛物线L1的函数表达式.
(2)将抛物线L1向上平移m(m>0)个单位得到抛物线L2.若抛物线L2的顶点关于坐标原点O的对称点在抛物线L1上,求m的值.
(3)把抛物线L1向右平移n(n>0)个单位得到抛物线L3,若点B(1,y1),C(3,y2)在抛物线L3上,且y1>y2,求n的取值范围.
【答案】(1)y=x2+2x﹣3;
(2)m=4;
(3)n>3.
【解答】解:(1)∵y=a(x+1)2﹣4(a≠0)经过点A(1,0),
∴4a﹣4=0,
∴a=1,
∴抛物线L1的函数表达式为y=x2+2x﹣3;
(2)∵y=(x+1)2﹣4,
∴抛物线的顶点(﹣1,﹣4),
将抛物线L1向上平移m(m>0)个单位得到抛物线L2.若抛物线L2的顶点(﹣1,﹣4+m),
而(﹣1,﹣4+m)关于原点的对称点为(1,4﹣m),
把(1,4﹣m)代入y=x2+2x﹣3得到,1+2﹣3=4﹣m,
∴m=4;
(3)抛物线L1向右平移n(n>0)个单位得到抛物线L3,的解析式为y=(x﹣n+1)2﹣4,
∵点B(1,y1),C(3,y2)在抛物线L3上,
∴y1=(2﹣n)2﹣4,y2=(4﹣n)2﹣4,
∵y1>y2,
∴(2﹣n)2﹣4>(4﹣n)2﹣4,
解得n>3,
∴n的取值范围为n>3.
4.(2023•浙江)在二次函数y=x2﹣2tx+3(t>0)中.
(1)若它的图象过点(2,1),则t的值为多少?
(2)当0≤x≤3时,y的最小值为﹣2,求出t的值;
(3)如果A(m﹣2,a),B(4,b),C(m,a)都在这个二次函数的图象上,且a<b<3.求m的取值范围.
【答案】(1)t=;
(2)t的值为;
(3)3<m<4或m>6.
【解答】解:(1)将(2,1)代入y=x2﹣2tx+3得:
1=4﹣4t+3,
解得:t=;
(2)抛物线y=x2﹣2tx+3对称轴为 x=t.
若0<t≤3,当x=t时函数取最小值,
∴t2﹣2t2+3=﹣2,
解得t=;
若t>3,当x=3时函数取最小值,
∴9﹣6t+3=﹣2,
解得 (不符合题意,舍去);
综上所述,t的值为;
(3)∵A(m﹣2,a),C(m,a)都在这个二次函数的图象上,
∴二次函数y=x2﹣2tx+3的对称轴直线x=t即为直线x==m﹣1,
∴t=m﹣1,
∵t>0,
∴m﹣1>0,
解得m>1,
∵m﹣2<m,
∴A在对称轴左侧,C在对称轴右侧,
在y=x2﹣2tx+3中,令x=0得y=3,
∴抛物线y=x2﹣2tx+3与y轴交点为(0,3),
∴(0,3)关于对称轴直线x=m﹣1的对称点为(2m﹣2,3),
∵b<3,
∴4<2m﹣2,
解得m>3;
①当A(m﹣2,a),B(4,b)都在对称轴左侧时,
∵y随x的增大而减小,且a<b,
∴4<m﹣2,
解得m>6,
此时m满足的条件为m>6;
②当A(m﹣2,a)在对称轴左侧,B(4,b)在对称轴右侧时,
∵a<b,
∴B(4,b)到对称轴直线x=m﹣1距离大于A(m﹣2,a)到对称轴直线x=m﹣1的距离,
∴4﹣(m﹣1)>m﹣1﹣(m﹣2),
解得:m<4,
此时m满足的条件是3<m<4,
综上所述,3<m<4或m>6.
三.三角形综合题(共1小题)
5.(2022•嘉兴)小东在做九上课本123页习题:“1:也是一个很有趣的比.已知线段AB(如图1),用直尺和圆规作AB上的一点P,使AP:AB=1:.”小东的作法是:如图2,以AB为斜边作等腰直角三角形ABC,再以点A为圆心,AC长为半径作弧,交线段AB于点P,点P即为所求作的点.小东称点P为线段AB的“趣点”.
(1)你赞同他的作法吗?请说明理由.
(2)小东在此基础上进行了如下操作和探究:连结CP,点D为线段AC上的动点,点E在AB的上方,构造△DPE,使得△DPE∽△CPB.
①如图3,当点D运动到点A时,求∠CPE的度数.
②如图4,DE分别交CP,CB于点M,N,当点D为线段AC的“趣点”时(CD<AD),猜想:点N是否为线段ME的“趣点”?并说明理由.
【答案】(1)赞同,理由见解析;
(2)①45°;②点N是线段ME的“趣点”,理由见解析.
【解答】解:(1)赞同,理由如下:
∵△ABC是等腰直角三角形,
∴AC=BC,∠A=∠B=45°,
∴cos45°=,
∵AC=AP,
∴,
∴点P为线段AB的“趣点”.
(2)①由题意得:∠CAB=∠B=45°,
∠ACB=90°,AC=AP=BC,
∴=67.5°,
∴∠BCP=90°﹣67.5°=22.5°,
∴∠CPB=180°﹣45°﹣22.5°=112.5°,
∵△DPE∽△CPB,D,A重合,
∴∠DPE=∠CPB=112.5°,
∴∠CPE=∠DPE+∠CPB﹣180°=45°;
②点N是线段ME的趣点,理由如下:
当点D为线段AC的趣点时(CD<AD),
∴,
∵AC=AP,
∴,
∵,∠A=∠A,
∴△ADP∽△ACB,
∴∠ADP=∠ACB=90°,
∴∠APD=45°,DP∥CB,
∴∠DPC=∠PCB=22.5°=∠PDE,
∴DM=PM,
∴∠MDC=∠MCD=90°﹣22.5°=67.5°,
∴MD=MC,
同理可得MC=MN,
∴MP=MD=MC=MN,
∵∠MDP=∠MPD=22.5°,∠E=∠B=45°,
∴∠EMP=45°,∠MPE=90°,
∴=,
∴点N是线段ME的“趣点”.
四.菱形的性质(共1小题)
6.(2023•浙江)如图,在菱形ABCD中,AE⊥BC于点E,AF⊥CD于点F,连结EF.
(1)求证:AE=AF;
(2)若∠B=60°,求∠AEF的度数.
【答案】(1)证明见解答;
(2)60°.
【解答】(1)证明:∵四边形ABCD是菱形,
∴AB=AD,∠B=∠D.
又∵AE⊥BC于点E,AF⊥CD于点F,
∴∠AEB=∠AFD=90°,
在△ABE与△ADF中,
∵.
∴△ABE≌△ADF(AAS).
∴AE=AF;
(2)解:∵四边形ABCD是菱形,
∴∠B+∠BAD=180°.
而∠B=60°,
∴∠BAD=120°.
又∵∠AEB=90°,∠B=60°,
∴∠BAE=30°.
由(1)知△ABE≌△ADF,
∴∠BAE=∠DAF=30°.
∴∠EAF=120°﹣30°﹣30°=60°.
∴△AEF是等边三角形.
∴∠AEF=60°.
五.四边形综合题(共1小题)
7.(2021•浙江)小王在学习浙教版九上课本第72页例2后,进一步开展探究活动:将一个矩形ABCD绕点A顺时针旋转α(0°<α≤90°),得到矩形AB′C′D′,连结BD.
[探究1]如图1,当α=90°时,点C′恰好在DB延长线上.若AB=1,求BC的长.
[探究2]如图2,连结AC′,过点D′作D′M∥AC′交BD于点M.线段D′M与DM相等吗?请说明理由.
[探究3]在探究2的条件下,射线DB分别交AD′,AC′于点P,N(如图3),发现线段DN,MN,PN存在一定的数量关系,请写出这个关系式,并加以证明.
【答案】[探究1]BC=.
[探究2]D'M=DM.证明过程见解析;
[探究3]关系式为MN2=PN•DN.证明过程见解析.
【解答】解:[探究1]如图1,设BC=x,
∵矩形ABCD绕点A顺时针旋转90°得到矩形AB′C′D′,
∴点A,B,D'在一条线上,
∴AD'=AD=BC=x,D'C'=AB'=AB=1,
∴D'B=AD'﹣AB=x﹣1,
∵∠BAD=∠D'=90°,
∴D'C'∥DA,
又∵点C'在DB的延长线上,
∴△D'C'B∽△ADB,
∴,
∴,
解得x1=,x2=(不合题意,舍去),
∴BC=.
[探究2]D'M=DM.
证明:如图2,连接DD',
∵D'M∥AC',
∴∠AD'M=∠D'AC',
∵AD'=AD,∠AD'C'=∠DAB=90°,D'C'=AB,
∴△AC'D'≌△DBA(SAS),
∴∠D'AC'=∠ADB,
∴∠ADB=∠AD'M,
∵AD'=AD,
∴∠ADD'=∠AD'D,
∴∠MDD'=∠MD'D,
∴D'M=DM;
[探究3]关系式为MN2=PN•DN.
证明:如图3,连接AM,
∵D'M=DM,AD'=AD,AM=AM,
∴△AD'M≌△ADM(SSS),
∴∠MAD'=∠MAD,
∵∠AMN=∠MAD+∠NDA,∠NAM=∠MAD'+∠NAP,
∴∠AMN=∠NAM,
∴MN=AN,
在△NAP和△NDA中,∠ANP=∠DNA,∠NAP=∠NDA,
∴△NPA∽△NAD,
∴,
∴AN2=PN•DN,
∴MN2=PN•DN.
六.圆的综合题(共2小题)
8.(2023•浙江)已知,AB是半径为1的⊙O的弦,⊙O的另一条弦CD满足CD=AB,且CD⊥AB于点H(其中点H在圆内,且AH>BH,CH>DH).
(1)在图1中用尺规作出弦CD与点H(不写作法,保留作图痕迹);
(2)连结AD,猜想:当弦AB的长度发生变化时,线段AD的长度是否变化?若发生变化,说明理由;若不变,求出AD的长度;
(3)如图2,延长AH至点F,使得HF=AH,连结CF,∠HCF的平分线CP交AD的延长线于点P,点M为AP的中点,连结HM.若PD=AD,求证:MH⊥CP.
【答案】(1)作图见解析;
(2)线段AD是定长,长度不发生变化,值为;
(3)证明见解析.
【解答】(1)解:如图1,CD、点H即为所求;
(2):当弦AB的长度发生变化时,线段AD的长度不变;
如图,连结AD,连接DO并延长交⊙O于E,连结AE,AC,过O作OF⊥AB于F,ON⊥CD于N,则四边形OFHN是矩形,
∵AB=CD,AB⊥CD,
∴OF=ON,
∴四边形OFHN是正方形,
∴FH=NH,
∴AF+FH=CN+NH,即AH=CH,
∴△ACH是等腰直角三角形,
∴∠C=45°,
∵,
∴∠E=∠C=45°,
∵DE是⊙O的直径,
∴∠EAD=90°,
∴∠ADE=45°,
∴△ADE是等腰直角三角形,
∴AE=AD,
∴AD=DE•sin∠E=,
∴线段AD是定长,长度不发生变化,值为;
(3)证明:如图3,延长CD、FP,交点为G,
∵HF=AH,
∴点H为AF的中点,
又∵点M为AP的中点,
∴MH是△APF的中位线,
∴MH∥PF,MH=PF,
又∵PD=AD,PM=AM,
∴MD=PD,
∵MH∥GP,
∴∠MHD=∠PGD,
又∵∠MDH=∠PDG,
∴△MDH∽△PDG,
∴,
即GP=2MH=PF,
如图3,作△CFG的外接圆,延长CP交外接圆于点N,连结GN、FN,
∵CP是∠HCF的平分线,
∴∠GCP=∠FCP,
∴GN=NF,
∵GP=PF,GN=NF,PN=PN,
∴△GPN≌△FPN(SSS),
∴∠GPN=∠FPN=90°,
∴PF⊥CP,
∵MH∥PF,
∴MH⊥CP.
9.(2022•舟山)如图1,在正方形ABCD中,点F,H分别在边AD,AB上,连结AC,FH交于点E,已知CF=CH.
(1)线段AC与FH垂直吗?请说明理由.
(2)如图2,过点A,H,F的圆交CF于点P,连结PH交AC于点K.求证:=.
(3)如图3,在(2)的条件下,当点K是线段AC的中点时,求的值.
【答案】(1)线段AC与FH垂直,见解析;(2)见解析;(3).
【解答】(1)解:线段AC与FH垂直,理由如下:
在正方形ABCD中,CD=CB,∠D=∠B=90°,∠DCA=∠BCA=45°,
在Rt△DCF和Rt△BCH中
,
∴Rt△DCF≌Rt△BCH(HL),
∴∠DCF=∠BCH,
∴∠FCA=∠HCA,
又∵CF=CH,
∴AC⊥FH;
(2)证明:∵∠DAB=90°,
∴FH为圆的直径,
∴∠FPH=90°,
又∵CF=CH,AC⊥FH,
∴点E为FH的中点,
∴∠CFD=∠KHA,
又∵Rt△DCF≌Rt△BCH,
∴∠CFD=∠CHB,
∴∠KHA=∠CHB,
过点K作KM⊥AH,交AH于点M,
∴∠KMH=∠B=90°,
∴△KMH∽△CBH,KM∥BC,
∴,,
∴.
(3)∵K为AC中点,
∴,
设MH=a,则BH=2a,KM=AM=3a,
∴AB=CB=6a,AH=4a,
在Rt△BCH中,CH=CF=,
在Rt△AFH中,FH=,
∴EH=2a,
∵∠FPH+∠FAH=180°,
∴∠FPH=∠CEH=90°,
又∵∠CHE=∠PFH,
∴△FPH∽△HEC,
∴,
∴PF=,
∴CP=CF﹣PF=,
∴=.
七.解直角三角形的应用(共1小题)
10.(2022•嘉兴)小华将一张纸对折后做成的纸飞机如图1,纸飞机机尾的横截面是一个轴对称图形,其示意图如图2,已知AD=BE=10cm,CD=CE=5cm,AD⊥CD,BE⊥CE,∠DCE=40°.
(1)连结DE,求线段DE的长.
(2)求点A,B之间的距离.
(结果精确到0.1cm.参考数据:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36,sin40°≈0.64,cos40°≈0.77,tan40°≈0.84)
【答案】(1)3.4cm;
(2)22.2cm.
【解答】解:(1)如图,过点C作CF⊥DE于点F,
∵CD=CE=5cm,∠DCE=40°.
∴∠DCF=20°,
∴DF=CD•sin20°≈5×0.34≈1.7(cm),
∴DE=2DF≈3.4cm,
∴线段DE的长约为3.4cm;
(2)∵横截面是一个轴对称图形,
∴延长CF交AD、BE延长线于点G,
连接AB,
∴DE∥AB,
∴∠A=∠GDE,
∵AD⊥CD,BE⊥CE,
∴∠GDF+∠FDC=90°,
∵∠DCF+∠FDC=90°,
∴∠GDF=∠DCF=20°,
∴∠A=20°,
∴DG=≈≈1.8(cm),
∴AG=AD+DG=10+1.8=11.8(cm),
∴AB=2AG•cos20°≈2×11.8×0.94≈22.2(cm).
∴点A,B之间的距离22.2cm.
八.解直角三角形的应用-仰角俯角问题(共1小题)
11.(2023•浙江)图1是某住宅单元楼的人脸识别系统(整个头部需在摄像头视角范围内才能被识别),其示意图如图2,摄像头A的仰角、俯角均为15°,摄像头高度OA=160cm,识别的最远水平距离OB=150cm.
(1)身高208cm的小杜,头部高度为26cm,他站在离摄像头水平距离130cm的点C处,请问小杜最少需要下蹲多少厘米才能被识别?
(2)身高120cm的小若,头部高度为15cm,踮起脚尖可以增高3cm,但仍无法被识别,社区及时将摄像头的仰角、俯角都调整为20°(如图3),此时小若能被识别吗?请计算说明.
(精确到0.1cm,参考数据:sin15°≈0.26,cos15°≈0.97,tan15°≈0.27,sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)
【答案】(1)小杜最少需要下蹲12.9厘米才能被识别;
(2)踮起脚尖小若能被识别.
【解答】解:(1)过C作OB的垂线分别交仰角、俯角线于点E,D,交水平线于点F,
在Rt△AEF中,tan∠EAF=,
∴EF=AF•tan15°≈130×0.27=35.1(cm),
∵AF=AF,∠EAF=∠DAF,∠AFE=∠AFD=90°,
∴△ADF≌△AEF(SAS),
∴EF=DE=35.1cm,
∴CE=160+35.1=195.1(cm),
∴小杜最少需要下蹲208﹣195.1=12.9厘米才能被识别;
(2)如图2,过B作OB的垂线分别交仰角、俯角线于M.N.交水平线于P,
在Rt△APM中,tan∠MAP=,
∴MP=AP•tan20°≈150×0.36=54.0(cm),
∵AP=AP,∠MAP=∠NAP,∠APM=∠APN=90°,
∴△AMP≌△ANP(ASA),
∴PN=MP=54.0cm,
∴BN=160﹣54.0=106.0(cm),
∴小若踮起脚尖后头顶的高度为120+3=123(cm),
∴小若头顶超出点N的高度为:123﹣106.0=17.0(cm)>15cm,
∴踮起脚尖小若能被识别.
相关试卷
这是一份2021-2023三年浙江省温州市中考数学真题分类汇编-03解答题(提升题)知识点分类(含答案),共29页。试卷主要包含了计算,某公司生产的一种营养品信息如表,根据以下素材,探索完成任务,,且∠AEB=∠CFD=90°,,且满足=,,连结AE等内容,欢迎下载使用。
这是一份浙江省台州市2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类,共24页。试卷主要包含了解方程组,的软管制作简易计时装置等内容,欢迎下载使用。
这是一份浙江省宁波市2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类,共33页。试卷主要包含了的图象的对称轴为直线x=2,【证明体验】,定义等内容,欢迎下载使用。