搜索
    上传资料 赚现金
    2023年湖南省邵阳市中考数学试卷(含答案解析)
    立即下载
    加入资料篮
    2023年湖南省邵阳市中考数学试卷(含答案解析)01
    2023年湖南省邵阳市中考数学试卷(含答案解析)02
    2023年湖南省邵阳市中考数学试卷(含答案解析)03
    还剩15页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2023年湖南省邵阳市中考数学试卷(含答案解析)

    展开
    这是一份2023年湖南省邵阳市中考数学试卷(含答案解析),共18页。试卷主要包含了 2023的倒数是,165×109B, 下列计算正确的是等内容,欢迎下载使用。

    2023年湖南省邵阳市中考数学试卷
    1. 2023的倒数是(    )
    A. −2023 B. 2023 C. 12023 D. −12023
    2. 下列四个图形中,是中心对称图形的是(    )
    A. B. C. D.
    3. 党的二十大报告提出,要坚持以文塑旅、以旅彰文,推进文化和旅游深度融合发展.湖南是文化旅游资源大省,深挖红色文化、非遗文化和乡村文化,推进文旅产业赋能乡村振兴.湖南红色旅游区(点)2022年接待游客约165000000人次,则165000000用科学记数法可表示为(    )
    A. 0.165×109 B. 1.65×108 C. 1.65×107 D. 16.5×107
    4. 下列计算正确的是(    )
    A. a6a3=a2 B. (a2)3=a5
    C. a(a+b)2+b(a+b)2=a+b D. (−13)0=1
    5. 如图,直线a,b被直线c所截,已知a//b,∠1=50∘,则∠2的大小为(    )
    A. 40∘
    B. 50∘
    C. 70∘
    D. 130∘
    6. 不等式组x−1<0−2x≤4的解集在数轴上可表示为(    )
    A. B.
    C. D.
    7. 有数字4,5,6的三张卡片,将这三张卡片任意摆成一个三位数,摆出的三位数是5的倍数的概率是(    )
    A. 16 B. 14 C. 13 D. 12
    8. 如图,矩形OABC的顶点B和正方形ADEF的顶点E都在反比例函数y=kx(k≠0)的图象上,点B的坐标为(2,4),则点E的坐标为(    )
    A. (4,4)
    B. (2,2)
    C. (2,4)
    D. (4,2)
    9. 如图,在四边形ABCD中,AB//CD,若添加一个条件,使四边形ABCD为平行四边形,则下列正确的是(    )


    A. AD=BC B. ∠ABD=∠BDC
    C. AB=AD D. ∠A=∠C
    10. 已知P1(x1,y1)P2(x2,y2)是抛物线y=ax2+4ax+3(a是常数,a≠0)上的点,现有以下四个结论:①该抛物线的对称轴是直线x=−2;②点(0,3)在抛物线上;③若x1>x2>−2,则y1>y2;④若y1=y2,则x1+x2=−2,其中,正确结论的个数为(    )
    A. 1个 B. 2个 C. 3个 D. 4个
    11. 64的立方根是______ .
    12. 因式分解:3a2+6ab+3b2=______ .
    13. 分式方程2x−1x−2=0的解是______ .
    14. 下表是小红参加一次“阳光体育”活动比赛的得分情况:
    项目
    跑步
    花样跳绳
    跳绳
    得分
    90
    80
    70
    评总分时,按跑步占50%,花样跳绳占30%,跳绳占20%考评,则小红的最终得分为______ .
    15. 如图,AD是⊙O的直径,AB是⊙O的弦,BC与⊙O相切于点B,连接OB,若∠ABC=65∘,则∠BOD的大小为______ .


    16. 如图,某数学兴趣小组用一张半径为30cm的扇形纸板做成一个圆锥形帽子(接缝忽略不计),如果做成的圆锥形帽子的底面半径为8cm,那么这张扇形纸板的面积为______ cm2.(结果保留π)


    17. 某校截止到2022年底,校园绿化面积为1000平方米.为美化环境,该校计划2024年底绿化面积达到1440平方米.利用方程想想,设这两年绿化面积的年平均增长率为x,则依题意列方程为______ .
    18. 如图,在矩形ABCD中,AB=2,AD= 7,动点P在矩形的边上沿B→C→D→A运动.当点P不与点A、B重合时,将△ABP沿AP对折,得到△AB′P,连接CB′,则在点P的运动过程中,线段CB′的最小值为______ .


    19. 计算:tan45∘+(12)−1+|−2|.
    20. 先化简,再求值:(a−3b)(a+3b)+(a−3b)2,其中a=−3,b=13.
    21. 如图,CA⊥AD,ED⊥AD,点B是线段AD上的一点,且CB⊥BE.已知AB=8,AC=6,DE=4.
    (1)证明:△ABC∽△DEB.
    (2)求线段BD的长.

    22. 低碳生活已是如今社会的一种潮流形式,人们的环保观念也在逐渐加深.“低碳环保,绿色出行”成为大家的生活理念,不少人选择自行车出行.某公司销售甲、乙两种型号的自行车,其中甲型自行车进货价格为每台500元,乙型自行车进货价格为每台800元.该公司销售3台甲型自行车和2台乙型自行车,可获利650元,销售1台甲型自行车和2台乙型自行车,可获利350元.
    (1)该公司销售一台甲型、一台乙型自行车的利润各是多少元?
    (2)为满足大众需求,该公司准备加购甲、乙两种型号的自行车共20台,且资金不超过13000元,最少需要购买甲型自行车多少台?
    23. 某市对九年级学生进行“综合素质”评价,评价的结果为A(优)、B(良好)、C(合格)、D(不合格)四个等级.现从中随机抽测了若干名学生的“综合素质”等级作为样本进行数据处理,并作出了如下频数分布图和如图所示的条形统计图(不完整).请根据图表中的信息回答下列问题.
    等级
    频数
    频率
    A
    a
    0.2
    B
    1600
    b
    C
    1400
    0.35
    D
    200
    0.05
    (1)求频数分布表中a,b的值.
    (2)补全条形统计图.
    (3)该市九年级学生约80000人,试估计该市有多少名九年级学生可以评为“A”级.

    24. 我国航天事业捷报频传,2023年5月30日,被誉为“神箭”的长征二号F运载火箭托举神舟十六号载人飞船跃入苍穹,中国空间站应用与发展阶段首次载人发射任务取得圆满成功.如图,有一枚运载火箭从地面O处发射,当火箭到达P处时,地面A处的雷达站测得AP距离是5000m,仰角为23∘,9s后,火箭直线到达Q处,此时地面A处雷达站测得Q处的仰角为45∘,求火箭从P到Q处的平均速度(结果精确到1m/s).
    (参考数据:sin23∘≈0.39,cos23∘≈0.92,tan23∘≈0.42)

    25. 如图,在等边三角形ABC中,D为AB上的一点,过点D作BC的平形线DE交AC于点E,点P是线段DE上的动点(点P不与D、E重合).将△ABP绕点A逆时针方向旋转60∘,得到△ACQ,连接EQ、PQ,PQ交AC于F.
    (1)证明:在点P的运动过程中,总有∠PEQ=120∘.
    (2)当APDP为何值时,△AQF是直角三角形?


    26. 如图,在平面直角坐标系中,抛物线y=ax2+x+c经过点A(−2,0)和点B(4,0),且与直线l:y=−x−1交于D、E两点(点D在点E的右侧),点M为直线l上的一动点,设点M的横坐标为t.
    (1)求抛物线的解析式.
    (2)过点M作x轴的垂线,与抛物线交于点N.若0 (3)抛物线与y轴交于点C,点R为平面直角坐标系上一点,若以B、C、M、R为顶点的四边形是菱形,请求出所有满足条件的点R的坐标.



    答案和解析

    1.【答案】C 
    【解析】解:由倒数的定义可知:2023的倒数是12023,
    故选:C.
    由倒数的意义可得出结论.
    本题考查了倒数的定义及应用,明确倒数的概念是解题的关键.

    2.【答案】A 
    【解析】解:由中心对称图形可知:A、该图形旋转180∘可与原图形重合,故本选项正确;
    B、C、D中图形旋转180∘均未与原图形重合;
    故选:A.
    由中心对称图形的定义可得出结论.
    本题考查了旋转的知识,掌握中心对称图形的概念是关键.

    3.【答案】B 
    【解析】解:165000000=1.65×108,
    故选:B.
    由科学记数法a×10n(0 本题考查了用科学记数法a×10n表示较大的数,注意数a的取值范围是解题的关键.

    4.【答案】D 
    【解析】解:A、a6a3=a3,原计算错误,不符合题意;
    B、(a2)3=a6,原计算错误,不符合题意;
    C、a(a+b)2+b(a+b)2=1a+b,原计算错误,不符合题意;
    D、(−13)0=1,正确,符合题意.
    故选:D.
    分别根据分式的加减法则、幂的乘方与积的乘方法则、零指数幂的运算法则对各选项进行逐一计算即可.
    本题考查的是分式的加减法,涉及到幂的乘方与积的乘方法则、零指数幂的运算法则,熟知以上知识是解题的关键.

    5.【答案】B 
    【解析】解:如图所示:

    ∵a//b,
    ∴∠2=∠3,
    ∵∠1=∠3,∠1=50∘,
    ∴∠1=∠2=50∘.
    故选:B.
    根据对顶角相等,可得∠1=∠3,又由平行线的性质,求得∠2的度数.
    此题考查了平行线的性质与对顶角的性质,注意掌握两直线平行,内错角相等是解此题的关键.

    6.【答案】A 
    【解析】解:{x−1<0①−2x⩽4②,
    由①得,x<1,
    由②得,x≥−2,
    在数轴上表示为:
    .
    故选:A.
    分别求出各不等式的解集,再在数轴上表示出来即可.
    本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.

    7.【答案】C 
    【解析】解:

    三位数有6个,是5的倍数的三位数是:465,645;
    三位数是5的倍数的概率为:26=13;
    故选:C.
    根据题意,画出图形即可,再根据数据进行分析.
    本题主要考查了概率的相关知识,难度不大,认真分析即可.

    8.【答案】D 
    【解析】解:∵点B的坐标为(2,4)在反比例函数y=kx上,
    ∴4=k2.
    ∴k=8.
    ∴反比例函数的解析式为y=8x.
    ∵点E在反比例函数上,
    ∴可设(a,8a).
    ∴AD=a−2=ED=8a.
    ∴a1=4,a2=−2.
    ∵a>0,
    ∴a=4.
    ∴E(4,2).
    故选:D.
    由题意,首先根据B的坐标求出k,然后可设E(a,8a),再由正方形ADEF,建立关于a的方程,进而得解.
    本题主要考查了反比例函数的图象与性质的应用,解题时需要理解并能灵活运用.

    9.【答案】D 
    【解析】解:A、由AB//CD,AD=BC,不能判定四边形ABCD为平行四边形,故选项A不符合题意;
    B、∵AB//CD,
    ∴∠ABD=∠BDC,
    ∴不能判定四边形ABCD为平行四边形,故选项B不符合题意;
    C、由AB//CD,AB=AD,不能判定四边形ABCD为平行四边形,故选项C不符合题意;
    D、∵AB//CD,
    ∴∠ABC+∠C=180∘,
    ∵∠A=∠C,
    ∴∠ABC+∠A=180∘,
    ∴AD//BC,
    又∵AB//CD,
    ∴四边形ABCD是平行四边形,故选项D符合题意;
    故选:D.
    由平行四边形的判定方法分别对各个选项进行判断即可.
    本题考查了平行四边形的判定以及平行线的判定与性质,熟练掌握平行四边形的判定方法是解题的关键.

    10.【答案】B 
    【解析】解:∵抛物线y=ax2+4ax+3的对称轴为直线x=−4a2a=−2,
    ∴①正确;
    当x=0时,y=3,则点点(0,3)在抛物线上,
    ∴②正确;
    当a>0时,x1>x2>−2,则y1>y2;
    当a<0时,x1>x2>−2,则y1 ∴③错误;
    当y1=y2,则x1+x2=−4,
    ∴④错误;
    故正确的有2个,
    故选:B.
    根据题目中的二次函数的性质,可以判断各个小题中的结论是否正确,从而可以解答本题.
    本题考查二次函数的性质,二次函数图象上点的坐标特征,解答本题的关键是明确题意,利用二次函数的性质解答.

    11.【答案】2 
    【解析】解: 64=8,
    38=2.
    故答案为:2.
    先求出 64的值,再根据立方根的定义解答即可.
    本题考查的是立方根及算术平方根,熟知如果一个数的立方等于a,那么这个数叫做a的立方根或三次方根是解题的关键.

    12.【答案】3(a+b)2 
    【解析】解:3a2+6ab+3b2,
    =3(a2+2ab+b2),
    =3(a+b)2.
    先提取公因式3,再利用完全平方公式分解因式即可.
    本题主要考查利用完全平方公式分解因式,熟记公式结构是解题的关键,本题要进行二次分解因式,分解因式要彻底.

    13.【答案】4 
    【解析】解:2x−1x−2=0
    分式两边同乘以x(x−2)得:2(x−2)−x=0,
    去括号得:2x−4−x=0,
    合并化系数为1得:x=4.
    检验:当x=4时,x(x−2)≠0,
    ∴原分式方程的解为:x=4.
    故答案为:4.
    确定最简公分母去分母将分式方程化为一元一次方程即可得出结论.
    本题考查了解分式方程,能正确找到最简公分母是解题的关键.

    14.【答案】83分 
    【解析】解:小红的最终得分为:90×50%+80×30%+70×20%=83(分).
    故答案为:83分.
    根据加权平均数的计算公式进行计算即可.
    本题考查的是加权平均数,熟记加权平均数的计算公式是解决本题的关键.

    15.【答案】50∘ 
    【解析】解:∵BC与⊙O相切于点B,
    ∴OB⊥BC,
    ∴∠OBC=90∘.
    ∵∠ABC=65∘,
    ∴∠OBA=∠OBC−∠ABC=25∘.
    ∵OB=OA,
    ∴∠OAB=∠OBA=25∘,
    ∴∠BOD=2∠OAB=50∘.
    故答案为:50∘.
    利用圆的切线的性质定理,同圆的半径相等,等腰三角形的性质和圆周角定理解答即可.
    本题主要考查了圆的有关性质,圆周角定理,圆的切线的性质定理,熟练掌握圆的有关性质是解题的关键.

    16.【答案】240π 
    【解析】解:这张扇形纸板的面积=12⋅2π⋅8⋅30=240π(cm2).
    故答案为:240π.
    根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式计算.
    本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.

    17.【答案】1000(1+x)2=1440 
    【解析】解:根据题意得:1000(1+x)2=1440,
    故答案为:1000(1+x)2=1440.
    根据2022年底绿化面积×(1+年平均增长率)2=2024年底绿化面积,列出一元二次方程即可.
    此题主要考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.

    18.【答案】 11−2 
    【解析】解:在矩形ABCD中,AB=2,AD= 7,
    ∴BC=AD= 7,AC= BC2+AB2= 7+4= 11,
    如图所示,当点P在BC.上时,

    ∵AB′=AB=2,
    .∴B′在A为圆心,2为半径的弧上运动,
    当A,B′,C三点共线时,CB最短,
    此时CB′=AC−AB′= 11−2,
    当点P在DC.上时,如图所示,

    此时CB′> 11−2,
    当P在AD上时,如图所示,此时CB′> 11−2,

    综上所述,CB′的最小值为 11−2,
    故答案为: 11−2.
    根据折叠的性质得出B′在A为圆心,2为半径的弧上运动,进而分类讨论当点P在BC上时,当点P在DC.上时,当P在AD.上时,即可求解.
    本题考查了矩形与折叠问题,圆外一点到圆上的距离的最值问题,熟练掌握折叠的性质是解题的关键.

    19.【答案】解:原式=1+2+2
    =5. 
    【解析】分别根据特殊角的三角函数值、负整数指数幂的运算法则、绝对值的性质计算出各数,再根据实数混合运算的法则进行计算即可.
    本题考查的是实数的运算,涉及到特殊角的三角函数值、负整数指数幂的运算法则、绝对值的性质,熟知以上知识是解题的关键.

    20.【答案】解:(a−3b)(a+3b)+(a−3b)2
    =a2−(3b)2+(a2−6ab+9b2)
    =a2−9b2+a2−6ab+9b2
    =2a2−6ab,
    当a=−3,b=13时,原式=2×(−3)2−6×(−3)×13=24. 
    【解析】利用平方差公式和完全平方公式将原式进行化简,再将a,b的值代入计算即可求解.
    本题主要考查整式的混合运算-化简求值,熟练掌握平方差公式和完全平方公式是解题关键.平方差公式:(a+b)(a−b)=a2−b.完全平方公式:(a±b)2=a2±2ab=b2.

    21.【答案】(1)证明:∵CA⊥AD,ED⊥AD,CB⊥BE,
    ∴∠A=∠CBE=∠D=90∘,
    ∴∠C+∠CBA=90∘,∠CBA+∠DBE=90∘,
    ∴∠C=∠DBE,
    ∴△ABC∽△DEB;
    (2)解:∵△ABC∽△DEB,
    ∴ACBD=ABDE,
    ∴6BD=84,
    ∴BD=3. 
    【解析】(1)利用同角的余角相等得∠C=∠DBE,可证明结论;
    (2)根据相似三角形的性质即可求出答案.
    本题主要考查了相似三角形的性质和判定,利用同角的余角相等得∠C=∠DBE是解决问题的关键.

    22.【答案】解:(1)设该公司销售一台甲型自行车的利润是x元,一台乙型自行车的利润是y元,
    由题意得:3x+2y=650x+2y=350,
    解得:x=150y=100,
    答:该公司销售一台甲型自行车的利润是150元,一台乙型自行车的利润是100元;
    (2)需要购买甲型自行车m台,则需要购买乙型自行车(20−m)台,
    由题意得:500m+800(20−m)≤13000,
    解得:m≥10,
    答:最少需要购买甲型自行车10台. 
    【解析】(1)设该公司销售一台甲型自行车的利润是x元,一台乙型自行车的利润是y元,根据该公司销售3台甲型自行车和2台乙型自行车,可获利650元,销售1台甲型自行车和2台乙型自行车,可获利350元.列出二元一次方程组,解方程组即可;
    (2)需要购买甲型自行车m台,则需要购买乙型自行车(20−m)台,根据资金不超过13000元,列出一元一次不等式,解不等式即可.
    本题考查了一元一次不等式的应用以及二元一次方程组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)找出数量关系,正确列出一元一次不等式.

    23.【答案】解:(1)∵被调查的人数为200÷0.05=4000(人),
    ∴a=4000×0.2=800,b=16004000=0.4;
    (2)如图:

    (3)80000×0.2=16000(名),
    答:估计该市有16000名九年级学生可以评为“A”级. 
    【解析】(1)先根据D等级人数及其所占百分比求出被调查的总人数,再分别由A、B等级频率和频数即可求出a和b的值;
    (2)根据a的值即可补全条形统计图;
    (3)用总人数乘以样本中A等级所占比例即可.
    本题考查的是频数(率)分布表,条形统计图和用样本估计总体,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.

    24.【答案】解:由题意可得:∠PAO=23∘,∠QAO=45∘,AP=5000m,
    则PO=APsin23∘=5000×0.39≈1950(m),
    AO=APcos23∘=5000×0.92≈4600(m),
    ∴OQ=AO=4600m,
    ∴PQ=OQ−OP=4600−1950=2650(m),
    则火箭从P处到Q处的平均速度为:2650÷9≈294(m/s),
    答:火箭从A处到B处的平均速度294m/s. 
    【解析】利用已知结合锐角三角函数关系得出PO以及QO的长,再求出PQ的长,即可得出平均速度.
    此题主要考查了解直角三角形的应用,得出QO的长是解题关键.

    25.【答案】(1)证明:∵将△ABP绕点A逆时针方向旋转60∘,
    ∴PA=QA,∠PAQ=60∘,
    ∴△APQ是等边三角形,
    ∴∠AQP=60∘,
    ∵DE//BC,
    ∴∠AED=∠ACB=60∘,
    ∴∠AQP=∠AED,
    ∴点A,点P,点E,点Q四点共圆,
    ∴∠PAQ+∠PEQ=180∘,
    ∴∠PEQ=120∘;
    (2)解:如图,

    根据题意:只有当∠AFQ=90∘时,成立,
    ∵△ABP绕点A逆时针方向旋转60∘,得到△ACQ,
    ∴∠PAQ=60∘,AP=AQ,
    ∴△APQ是等边三角形,
    ∴∠PAQ=60∘,
    ∵∠AFQ=90∘,
    ∴∠PAF=∠QAF=30∘,
    ∵△ABC是等边三角形,
    ∴∠ABC=∠BCA=∠CAB=60∘,
    ∵DE//BC,
    ∴∠ADP=∠ABC=60∘,
    ∴∠DAP=30∘,∠APD=90∘,
    ∴tan∠ADP=tan60∘=APPD= 3. 
    【解析】(1)由旋转的性质可得PA=QA,∠PAQ=60∘,通过证明点A,点P,点E,点Q四点共圆,可得∠PAQ+∠PEQ=180∘,即可得结论;
    (2)由旋转的性质可得∠PAQ=60∘,AP=AQ,由角的数量关系可求∠DAP=30∘,∠APD=90∘,即可求解.
    本题考查了旋转的性质,等边三角形的判定和性质,锐角三角函数等知识,灵活运用这些性质解决问题是解题的关键.

    26.【答案】解:(1)把A(−2,0),B(4,0)代入y=ax2+x+c得:
    4a−2+c=016a+4+c=0,
    解得:a=−12c=4,
    ∴抛物线解析式为y=−12x2+x+4;
    (2)联立y=−12x2+x+4y=−x−1,
    解得x=2+ 14y=−3− 14或x=2− 14y=−3+ 14,
    ∴D(2+ 14,−3− 14),E(2− 14,−3+ 14),
    ∵点M为直线l上的一动点,横坐标为t,
    ∴M(t,−t−1),
    ∴N(t,−12t2+t+4),
    ∴MN=−12t2+t+4−(−t−1)=−12t2+2t+5,
    ∴S△NED=12MN⋅|xD−xE|=12×(−12t2+2t+5)×2 14=− 142(t−2)2+7 14,
    ∵− 142<0,0 ∴当t=2时,S△NED取最大值7 14,
    ∴△NED面积的最大值是7 14;
    (3)在y=−12x2+x+4中,令x=0得y=4,
    ∴C(0,4),
    设M(t,−t−1),R(m,n),
    又B(4,0),
    ①当BC,MR为对角线时,BC,MR的中点重合,且BM=CM,
    ∴4+0=t+m0+4=−t−1+n(t−4)2+(−t−1)2=t2+(t+5)2,
    解得t=−12m=92n=92,
    ∴R(92,92);
    ②当BM,CR为对角线时,BM,CR的中点重合,且BC=CM,
    ∴t+4=m−t−1=n+432=t2+(t+5)2,
    解得t=−5+ 392m=3+ 392n=−5− 392或t=−5− 392m=3− 392n=−5+ 392,
    ∴R(3+ 392,−5− 392)或(3− 392,−5+ 392);
    ③当BR,CM为对角线时,BR,CM的中点重合,且BC=BM,
    ∴m+4=tn=4−t−132=(t−4)2+((−t−1)2,
    解得t=3+ 392m=−5+ 392n=3− 392或t=3− 392m=−5− 392n=3+ 392,
    ∴R(−5+ 392,3− 392)或(−5− 392,3+ 392);
    综上所述,R的坐标为(92,92)或(3+ 392,−5− 392)或(3− 392,−5+ 392)或(−5+ 392,3− 392)或(−5− 392,3+ 392). 
    【解析】(1)待定系数法求解析式即可;
    (2)根据题意,联立抛物线与直线解析式,求得点D,E的横坐标,表示出MN的长,可得S△NED=12MN⋅|xD−xE|=− 142(t−2)2+7 14,再根据二次函数性质可得答案;
    (3)求出C(0,4),设M(t,−t−1),R(m,n),分三种情况:①当BC,MR为对角线时,BC,MR的中点重合,且BM=CM,②当BM,CR为对角线时,BM,CR的中点重合,且BC=CM,③当BR,CM为对角线时,BR,CM的中点重合,且BC=BM,分别列方程组可解得答案.
    本题考查了二次函数的综合应用,涉及三角形面积问题,菱形的性质与判定,勾股定理等知识,熟练掌握二次函数的性质,准确的计算是解题的关键.

    相关试卷

    2023年湖南省邵阳市中考数学试卷: 这是一份2023年湖南省邵阳市中考数学试卷,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023年湖南省邵阳市中考数学试卷(含解析): 这是一份2023年湖南省邵阳市中考数学试卷(含解析),共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2020年湖南省邵阳市中考数学试卷(含答案): 这是一份2020年湖南省邵阳市中考数学试卷(含答案),共10页。试卷主要包含了2020的倒数是,下列计算正确的是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        2023年湖南省邵阳市中考数学试卷(含答案解析)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map