- 2023新教材高中数学第3章圆锥曲线的方程3.2双曲线3.2.1双曲线及其标准方程教师用书新人教A版选择性必修第一册 其他 0 次下载
- 2023新教材高中数学第3章圆锥曲线的方程3.2双曲线3.2.2双曲线的简单几何性质教师用书新人教A版选择性必修第一册 其他 0 次下载
- 2023新教材高中数学第3章圆锥曲线的方程3.3抛物线3.3.1抛物线及其标准方程教师用书新人教A版选择性必修第一册 其他 0 次下载
- 2023新教材高中数学第3章圆锥曲线的方程3.3抛物线3.3.2第2课时抛物线的方程及性质的应用教师用书新人教A版选择性必修第一册 其他 0 次下载
- 2023新教材高中数学第3章圆锥曲线的方程章末综合提升教师用书新人教A版选择性必修第一册 其他 0 次下载
2023新教材高中数学第3章圆锥曲线的方程3.3抛物线3.3.2第1课时抛物线的简单几何性质教师用书新人教A版选择性必修第一册
展开3.3.2 抛物线的简单几何性质
第1课时 抛物线的简单几何性质
1.掌握抛物线的几何性质.(重点) 2.掌握直线与抛物线的位置关系的判断及相关问题.(重点) 3.能利用方程及数形结合思想解决焦点弦等问题.(难点) | 1.通过抛物线几何性质的应用,培养数学运算素养. 2.通过直线与抛物线的位置关系、焦点弦等问题的学习,提升逻辑推理、直观想象及数学运算素养. |
一只很小的灯泡发出的光,会分散地射向各方,但把它装在手电筒里,经过适当调节,就能射出一束较强的平行光,这是什么原因呢?主要用到了抛物线的怎样的几何性质呢?
知识点1 抛物线的几何性质
标准方程 | y2=2px(p>0) | y2=-2px(p>0) | x2=2py(p>0) | x2=-2py(p>0) | |
图形 | |||||
性质 | 焦点 | ||||
准线 | x=- | x= | y=- | y= | |
范围 | x≥0,y∈R | x≤0,y∈R | y≥0,x∈R | y≤0,x∈R | |
对称轴 | x轴 | y轴 | |||
顶点 | (0,0) | ||||
离心率 | e=1 |
1.思考辨析(正确的打“√”,错误的打“×”)
(1)抛物线关于顶点对称. ( )
(2)抛物线只有一个焦点,一条对称轴,无对称中心. ( )
(3)抛物线的标准方程虽然各不相同,但是其离心率都相同. ( )
[答案] (1)× (2)√ (3)√
知识点2 直线与抛物线的位置关系
直线与抛物线有三种位置关系:相离、相切和相交.
设直线y=kx+m与抛物线y2=2px(p>0)相交于A(x1,y1),B(x2,y2)两点,将y=kx+m代入y2=2px,消去y并化简,得k2x2+2(mk-p)x+m2=0.
①k=0时,直线与抛物线只有一个交点;
②k≠0时,Δ>0⇔直线与抛物线相交⇔有两个公共点.
Δ=0⇔直线与抛物线相切⇔只有一个公共点.
Δ<0⇔直线与抛物线相离⇔没有公共点.
直线与抛物线只有一个公共点,那么直线与抛物线一定相切吗?
[提示] 可能相切,也可能相交,当直线与抛物线的对称轴平行或重合时,直线与抛物线相交且只有一个公共点.
2.若直线y=kx+2与y2=x只有一个公共点,则实数k的值为________.
0或 [由消去x得ky2-y+2=0,若k=0,直线与抛物线只有一个交点,则y=2,符合题意;若k≠0,则Δ=1-8k=0,所以k=.
综上,k=0或.]
知识点3 直线与抛物线相交的弦长问题
(1)一般弦长
设斜率为k的直线l与抛物线相交于A(x1,y1),B(x2,y2)两点,则|AB|=·或|AB|=(k≠0).
(2)焦点弦长
已知过抛物线y2=2px(p>0)的焦点F的直线交抛物线于A,B两点,则称AB为抛物线的焦点弦.设A(x1,y1),B(x2,y2),由抛物线定义知,|AF|=x1+,|BF|=x2+,故|AB|=x1+x2+p.
3.过抛物线y2=4x的焦点作直线交抛物线于A(x1,y1),B(x2,y2)两点,若x1+x2=10,则弦AB的长度为( )
A.16 B.14 C.12 D.10
C [抛物线y2=4x的准线方程为x=-1,
则|AB|=|AF|+|BF|=(x1+1)+(x2+1)=x1+x2+2=12,故选C.]
类型1 抛物线性质的应用
【例1】 (1)已知抛物线的顶点在坐标原点,对称轴为x轴且与圆x2+y2=4相交的公共弦长等于2,则抛物线的方程为________.
(2)如图,过抛物线y2=2px(p>0)的焦点F的直线依次交抛物线及准线于点A,B,C,若|BC|=2|BF|,且|AF|=4,求抛物线的方程.
(1)y2=3x或y2=-3x [根据抛物线和圆的对称性知,其交点纵坐标为±,交点横坐标为±1,则抛物线过点(1,)或(-1,),设抛物线方程为y2=2px或y2=-2px(p>0),
则2p=3,从而抛物线方程为y2=3x或y2=-3x.]
(2)[解] 如图,分别过点A,B作准线的垂线,分别交准线于点E,D,
设|BF|=a,则由已知得:
|BC|=2a,
由定义得:|BD|=a,故∠BCD=30°,
在Rt△ACE中,
∵|AF|=4,|AC|=4+3a,
∴2|AE|=|AC|,
∴4+3a=8,从而得a=,
∵BD∥FG,∴=,p=2.因此抛物线的方程是y2=4x.
把握三个要点确定抛物线的几何性质
(1)开口:由抛物线标准方程看图象开口,关键是看准一次项是x还是y,一次项的系数是正还是负.
(2)关系:顶点位于焦点与准线中间,准线垂直于对称轴.
(3)定值:焦点到准线的距离为p;过焦点垂直于对称轴的弦(又称为通径)长为2p;离心率恒等于1.
1.(1)边长为1的等边三角形AOB,O为坐标原点,AB⊥x轴,以O为顶点且过A,B的抛物线方程是( )
A.y2=x B.y2=-x
C.y2=±x D.y2=±x
(2)抛物线的顶点在原点,对称轴重合于椭圆9x2+4y2=36短轴所在的直线,抛物线焦点到顶点的距离为3,求抛物线的方程及抛物线的准线方程.
(1)C [设抛物线方程为y2=ax(a≠0).
又A(取点A在x轴上方),
则有=±a,
解得a=±,所以抛物线方程为y2=±x.故选C.]
(2)[解] 椭圆的方程可化为+=1,
其短轴在x轴上,
∴抛物线的对称轴为x轴,
∴设抛物线的方程为y2=2px(p>0)或y2=-2px(p>0).
∵抛物线的焦点到顶点的距离为3,
即=3,∴p=6,
∴抛物线的标准方程为y2=12x或y2=-12x,其准线方程分别为x=-3和x=3.
类型2 直线与抛物线的位置关系
【例2】 已知直线l:y=kx+1,抛物线C:y2=4x,当k为何值时,l与C:只有一个公共点;有两个公共点;没有公共点.
[解] 联立消去y,
得k2x2+(2k-4)x+1=0. (*)
当k=0时,(*)式只有一个解x=,
∴y=1,
∴直线l与C只有一个公共点,
此时直线l平行于x轴.
当k≠0时,(*)式是一个一元二次方程,
Δ=(2k-4)2-4k2=16(1-k).
①当Δ>0,即k<1,且k≠0时,
l与C有两个公共点,此时直线l与C相交;
②当Δ=0,即k=1时,l与C有一个公共点,此时直线l与C相切;
③当Δ<0,即k>1时,l与C没有公共点,此时直线l与C相离.
综上所述,当k=1或0时,l与C有一个公共点;
当k<1,且k≠0时,l与C有两个公共点;
当k>1时,l与C没有公共点.
直线与抛物线交点问题的解题思路
(1)判断直线与抛物线的交点个数时,一般是将直线与抛物线的方程联立消元,转化为形如一元二次方程的形式,注意讨论二次项系数是否为0.若该方程为一元二次方程,则利用判别式判断方程解的个数.
(2)直线与抛物线有一个公共点时有两种情形:①直线与抛物线的对称轴重合或平行;②直线与抛物线相切.
2.过定点P(0,1)作与抛物线y2=2x只有一个公共点的直线有几条?
[解] (1)当直线的斜率不存在时,直线方程为x=0符合题意.
(2)当直线的斜率存在时,设过点P的直线方程为y=kx+1.
由得k2x2+2(k-1)x+1=0.
当k=0时,方程为-2x+1=0,解得x=只有一解,
直线与抛物线只有一个公共点,此时,直线方程为y=1.
当k≠0时,由Δ=4(k-1)2-4k2=0,得k=,此时直线与抛物线只有一个公共点,直线方程为y=x+1.
综上知,过定点P(0,1)与抛物线y2=2x只有一个公共点的直线有三条.
类型3 抛物线的焦点弦问题
【例3】 (对接教材P135例题)已知抛物线方程为y2=2px(p>0),过此抛物线的焦点的直线与抛物线交于A,B两点,且|AB|=p,求AB所在直线的方程.
直线过抛物线的焦点,则弦长与交点的横坐标或纵坐标之和有关,由此思考解决问题的方法.
[解] 由题意知焦点F,设A(x1,y1),B(x2,y2),
若AB⊥x轴,则|AB|=2p<p,不满足题意.
所以直线AB的斜率存在,设为k,
则直线AB的方程为y=k,k≠0.由,消去y,
整理得k2x2-(k2p+2p)x+=0.
由根与系数的关系得x1+x2=p+.
所以|AB|=x1++x2+=x1+x2+p=2p+
=p,解得k=±2.
所以AB所在直线的方程为
y=2或y=-2,即2x-y-p=0或2x+y-p=0.
1.解决抛物线的焦点弦问题时,要注意抛物线定义在其中的应用,通过定义将焦点弦长度转化为端点的坐标问题,从而可借助根与系数的关系进行求解.
2.设直线方程时要特别注意斜率不存在的直线应单独讨论.
3.设抛物线C:x2=4y焦点为F,直线y=kx+2与C交于A,B两点,且|AF|·|BF|=25,则k的值为( )
A.±2 B.-1 C.±1 D.-2
A [设A(x1,y1),B(x2,y2),将直线y=kx+2代入x2=4y,
消去x得y2-(4+4k2)y+4=0,
所以y1·y2=4,y1+y2=4+4k2,
抛物线C:x2=4y的准线方程为y=-1,
因为|AF|=y1+1,|BF|=y2+1,
所以|AF|·|BF|=y1·y2+(y1+y2)+1=4+4+4k2+1=25⇒k=±2.]
1.(多选题)以y轴为对称轴的抛物线的通径(过焦点且与对称轴垂直的弦)长为8,若抛物线的顶点在坐标原点,则其方程为( )
A.y2=8x B.y2=-8x
C.x2=8y D.x2=-8y
CD [设抛物线方程为x2=2py(p>0)或x2=-2py(p>0),
依题意令y=,代入x2=2py或令y=-,代入x2=-2py得|x|=p,
∴2|x|=2p=8,p=4.
∴抛物线方程为x2=8y或x2=-8y.]
2.已知点A(-2,3)在抛物线C:y2=2px(p>0)的准线上,记C的焦点为F,则直线AF的斜率为( )
A.- B.-1 C.- D.-
C [因为抛物线C:y2=2px的准线为x=-,且点A(-2,3)在准线上,所以=-2,解得p=4,所以y2=8x,所以焦点F的坐标为(2,0),故直线AF的斜率k==-.]
3.设O为坐标原点,F为抛物线y2=4x的焦点,A是抛物线上一点,若·=-4,则点A的坐标是( )
A.(2,±2) B.(1,±2)
C.(1,2) D.(2,2)
B [由题意知F(1,0),设A,则=,
=.
由·=-4得y0=±2,∴点A的坐标为(1,±2),故选B.]
4.已知AB是过抛物线2x2=y的焦点的弦,若|AB|=4,则AB的中点的纵坐标是________.
[设A(x1,y1),B(x2,y2),
由抛物线2x2=y,可得p=.
∵|AB|=y1+y2+p=4,
∴y1+y2=4-=,故AB的中点的纵坐标是=.]
5.直线y=kx+2与抛物线y2=8x有且只有一个公共点,则k=________.
0或1 [当k=0时,直线与抛物线有唯一交点,
当k≠0时,联立方程消去y,得
k2x2+4(k-2)x+4=0,
由题意Δ=16(k-2)2-16k2=0,
∴k=1.综上,k=0或1.]
回顾本节知识,自主完成以下问题:
1.怎样确定抛物线上的点的横坐标与纵坐标的范围?
[提示] 方法一:利用方程确定.如x2=2py(p>0),由x2≥0知y≥0,x∈R.
方法二:先根据方程画出抛物线,再根据图形确定.
2.直线与抛物线只有一个公共点,那么直线与抛物线一定相切吗?
[提示] 当直线与抛物线的对称轴平行或重合时,直线与抛物线只有一个交点,但直线与抛物线相交,不相切.
3.直线y=kx+b与抛物线x2=-2py相交,且经过抛物线的焦点F,若交点为A(x1,y1),B(x2,y2),则弦长|AB|与点A,B的坐标有什么关系?
[提示] |AB|=p-(y1+y2).