所属成套资源:全国分地区2021-2023三年中考数学真题分类汇编
四川省自贡市2021-2023三年中考数学真题分类汇编-02填空题知识点分类
展开
这是一份四川省自贡市2021-2023三年中考数学真题分类汇编-02填空题知识点分类,共13页。试卷主要包含了计算,分解因式,化简等内容,欢迎下载使用。
四川省自贡市2021-2023三年中考数学真题分类汇编-02填空题知识点分类一.绝对值(共1小题)1.(2022•自贡)计算:|﹣2|= .二.有理数的混合运算(共1小题)2.(2021•自贡)如图,某学校“桃李餐厅”把WIFI密码做成了数学题.小红在餐厅就餐时,思索了一会儿,输入密码,顺利地连接到了“桃李餐厅”的网络.那么她输入的密码是 .三.估算无理数的大小(共2小题)3.(2021•自贡)请写出一个满足不等式x+>7的整数解 .4.(2023•自贡)请写出一个比小的整数 .四.合并同类项(共1小题)5.(2023•自贡)计算:7a2﹣4a2= .五.因式分解-提公因式法(共1小题)6.(2022•舟山)分解因式:m2+m= .六.约分(共1小题)7.(2023•自贡)化简:= .七.分式的加减法(共1小题)8.(2021•自贡)化简:﹣= .八.分式的混合运算(共1小题)9.(2022•自贡)化简:•+= .九.一次函数的性质(共1小题)10.(2021•自贡)当自变量﹣1≤x≤3时,函数y=|x﹣k|(k为常数)的最小值为k+3,则满足条件的k的值为 .一十.垂径定理(共1小题)11.(2022•自贡)一块圆形玻璃镜面碎成了几块,其中一块如图所示,测得弦AB长20厘米,弓形高CD为2厘米,则镜面半径为 厘米.一十一.圆锥的计算(共1小题)12.(2023•自贡)如图,小珍同学用半径为8cm,圆心角为100°的扇形纸片,制作一个底面半径为2cm的圆锥侧面,则圆锥上粘贴部分的面积是 cm2.一十二.轴对称-最短路线问题(共1小题)13.(2022•自贡)如图,矩形ABCD中,AB=4,BC=2,G是AD的中点,线段EF在边AB上左右滑动,若EF=1,则GE+CF的最小值为 .一十三.胡不归问题(共1小题)14.(2023•自贡)如图,直线y=﹣x+2与x轴,y轴分别交于A,B两点,点D是线段AB上一动点,点H是直线y=﹣x+2上的一动点,动点E(m,0),F(m+3,0),连接BE,DF,HD.当BE+DF取最小值时,3BH+5DH的最小值是 .一十四.用样本估计总体(共1小题)15.(2022•自贡)为了比较甲、乙两鱼池中的鱼苗数目,小明从两鱼池中各捞出100条鱼苗,每条做好记号,然后放回原鱼池.一段时间后,在同样的地方,小明再从甲、乙两鱼池中各捞出100条鱼苗,发现其中有记号的鱼苗分别是5条、10条,可以初步估计鱼苗数目较多的是 鱼池.(填甲或乙)一十五.加权平均数(共1小题)16.(2021•自贡)某中学规定学生的学期体育成绩满分为100,其中体育课外活动占30%,期末考试成绩占70%,小彤的这两项成绩依次是90,80.则小彤这学期的体育成绩是 .一十六.列表法与树状图法(共1小题)17.(2023•自贡)端午节早上,小颖为全家人蒸了2个蛋黄粽,3个鲜肉粽,她从中随机挑选了两个孝敬爷爷奶奶,请问爷爷奶奶吃到同类粽子的概率是 .
四川省自贡市2021-2023三年中考数学真题分类汇编-02填空题知识点分类参考答案与试题解析一.绝对值(共1小题)1.(2022•自贡)计算:|﹣2|= 2 .【答案】见试题解答内容【解答】解:∵﹣2<0,∴|﹣2|=2.故答案为:2.二.有理数的混合运算(共1小题)2.(2021•自贡)如图,某学校“桃李餐厅”把WIFI密码做成了数学题.小红在餐厅就餐时,思索了一会儿,输入密码,顺利地连接到了“桃李餐厅”的网络.那么她输入的密码是 244872 .【答案】见试题解答内容【解答】解:由三个等式,得到规律:5*3⊕6=301848可知:5×6 3×6 6×(5+3),2*6⊕7=144256可知:2×7 6×7 7×(2+6),9*2⊕5=451055可知:9×5 2×5 5×(9+2),∴4*8⊕6=4×6 8×6 6×(4+8)=244872.故答案为:244872.三.估算无理数的大小(共2小题)3.(2021•自贡)请写出一个满足不等式x+>7的整数解 6(答案不唯一) .【答案】6(答案不唯一).【解答】解:∵x+>7,∴x>7﹣,∵1<<2,∴﹣2<﹣<﹣1,∴7﹣2<7﹣<﹣1+7∴5<7﹣<6,故满足不等式x+>7的整数解可以为:6(答案不唯一).故答案为:6(答案不唯一).4.(2023•自贡)请写出一个比小的整数 4(答案不唯一) .【答案】4(答案不唯一).【解答】解:∵42=16,52=25,而16<23<25,∴4<<5,∴比小的整数有4(答案不唯一),故答案为:4(答案不唯一).四.合并同类项(共1小题)5.(2023•自贡)计算:7a2﹣4a2= 3a2 .【答案】3a2.【解答】解:7a2﹣4a2=(7﹣4)a2=3a2,故答案为:3a2.五.因式分解-提公因式法(共1小题)6.(2022•舟山)分解因式:m2+m= m(m+1) .【答案】m(m+1).【解答】解:m2+m=m(m+1).故答案为:m(m+1).六.约分(共1小题)7.(2023•自贡)化简:= x﹣1 .【答案】x﹣1.【解答】解:原式==x﹣1.故答案为:x﹣1.七.分式的加减法(共1小题)8.(2021•自贡)化简:﹣= .【答案】.【解答】解:=====.故答案为:.八.分式的混合运算(共1小题)9.(2022•自贡)化简:•+= .【答案】.【解答】解:•+=+=+=,故答案为:.九.一次函数的性质(共1小题)10.(2021•自贡)当自变量﹣1≤x≤3时,函数y=|x﹣k|(k为常数)的最小值为k+3,则满足条件的k的值为 ﹣2 .【答案】﹣2.【解答】解:当x≥k时,函数y=|x﹣k|=x﹣k,此时y随x的增大而增大,而﹣1≤x≤3时,函数的最小值为k+3,∴x=﹣1时取得最小值,即有﹣1﹣k=k+3,解得k=﹣2,(此时﹣1≤x≤3,x≥k成立),当x<k时,函数y=|x﹣k|=﹣x+k,此时y随x的增大而减小,而﹣1≤x≤3时,函数的最小值为k+3,∴x=3时取得最小值,即有﹣3+k=k+3,此时无解,故答案为:﹣2.一十.垂径定理(共1小题)11.(2022•自贡)一块圆形玻璃镜面碎成了几块,其中一块如图所示,测得弦AB长20厘米,弓形高CD为2厘米,则镜面半径为 26 厘米.【答案】26.【解答】解:如图,点O是圆形玻璃镜面的圆心,连接OC,则点C,点D,点O三点共线,由题意可得:OC⊥AB,AC=AB=10(厘米),设镜面半径为x厘米,由题意可得:x2=102+(x﹣2)2,∴x=26,∴镜面半径为26厘米,故答案为:26.一十一.圆锥的计算(共1小题)12.(2023•自贡)如图,小珍同学用半径为8cm,圆心角为100°的扇形纸片,制作一个底面半径为2cm的圆锥侧面,则圆锥上粘贴部分的面积是 cm2.【答案】.【解答】解:如图,由题意得弧AC的长为2π×2=4π(cm),设弧AC所对的圆心角为n°,则即=4π,解得n=90,∴粘贴部分所对应的圆心角为100°﹣90°=10°,∴圆锥上粘贴部分的面积是=(cm2),故答案为:.一十二.轴对称-最短路线问题(共1小题)13.(2022•自贡)如图,矩形ABCD中,AB=4,BC=2,G是AD的中点,线段EF在边AB上左右滑动,若EF=1,则GE+CF的最小值为 3 .【答案】3.【解答】解:解法一:如图,作G关于AB的对称点G',在CD上截取CH=1,然后连接HG'交AB于E,在EB上截取EF=1,此时GE+CF的值最小,∵CH=EF=1,CH∥EF,∴四边形EFCH是平行四边形,∴EH=CF,∴G'H=EG'+EH=EG+CF,∵AB=4,BC=AD=2,G为边AD的中点,∴DG'=AD+AG'=2+1=3,DH=4﹣1=3,由勾股定理得:HG'==3,即GE+CF的最小值为3.解法二:∵AG=AD=1,设AE=x,则BF=AB﹣EF﹣AE=4﹣x﹣1=3﹣x,由勾股定理得:EG+CF=+,如图,矩形EFGH中,EH=3,GH=2,GQ=1,P为FG上一动点,设PG=x,则FP=3﹣x,∴EP+PQ=+,当E,P,Q三点共线时,EP+PQ最小,最小值是3,即EG+CF的最小值是3.故答案为:3.一十三.胡不归问题(共1小题)14.(2023•自贡)如图,直线y=﹣x+2与x轴,y轴分别交于A,B两点,点D是线段AB上一动点,点H是直线y=﹣x+2上的一动点,动点E(m,0),F(m+3,0),连接BE,DF,HD.当BE+DF取最小值时,3BH+5DH的最小值是 .【答案】.【解答】解:∵直线 与x轴,y轴分别交于A,B两点,∴B(0,2),A(6,0),作点B关于x轴的对称点B'(0,﹣2),把点B'向右平移3个单位得到C(3,﹣2),作CD⊥AB于点D,交x轴于点F,过点B'作B'E∥CD交x轴于点E,则四边形EFCB'是平行四边形,此时,B'E=BE=CF,∴BE+DF=CF+DF=CD有最小值,作CP⊥x轴于点P,则CP=2,OP=3,∵∠CFP=∠AFD,∴∠FCP=∠FAD,∴tan∠FCP=tan∠FAD,∴,即 ,则 ,设直线CD的解析式为y=kx+b,则,,解得,∴直线CD的解析式为y=3x﹣11,联立,解得,即D(,),过点D作DG⊥y轴于点G,直线 与x轴的交点为,则,∴sin∠OBQ===,∴,∴3BH+5DH=5(BH+DH)=5(HG+DH)=5DG,即3BH+5DH的最小值是5DG=5×=,故答案为:.一十四.用样本估计总体(共1小题)15.(2022•自贡)为了比较甲、乙两鱼池中的鱼苗数目,小明从两鱼池中各捞出100条鱼苗,每条做好记号,然后放回原鱼池.一段时间后,在同样的地方,小明再从甲、乙两鱼池中各捞出100条鱼苗,发现其中有记号的鱼苗分别是5条、10条,可以初步估计鱼苗数目较多的是 甲 鱼池.(填甲或乙)【答案】甲.【解答】解:由题意可得,甲鱼池中的鱼苗数量约为:100÷=2000(条),乙鱼池中的鱼苗数量约为:100÷=1000(条),∵2000>1000,∴初步估计鱼苗数目较多的是甲鱼池,故答案为:甲.一十五.加权平均数(共1小题)16.(2021•自贡)某中学规定学生的学期体育成绩满分为100,其中体育课外活动占30%,期末考试成绩占70%,小彤的这两项成绩依次是90,80.则小彤这学期的体育成绩是 83 .【答案】83.【解答】解:小彤这学期的体育成绩是90×30%+80×70%=83,故答案为:83.一十六.列表法与树状图法(共1小题)17.(2023•自贡)端午节早上,小颖为全家人蒸了2个蛋黄粽,3个鲜肉粽,她从中随机挑选了两个孝敬爷爷奶奶,请问爷爷奶奶吃到同类粽子的概率是 .【答案】.【解答】解:把2个蛋黄粽分别记为A、B,3个鲜肉粽分别记为C、D、E,画树状图如下:共有20种等可能的结果,其中爷爷奶奶吃到同类粽子的结果有8种,即AB、BA、CD、CE、DC、DE、EC、ED,∴爷爷奶奶吃到同类粽子的概率是=,故答案为:.
相关试卷
这是一份河南省2021-2023三年中考数学真题分类汇编-02填空题知识点分类,共16页。
这是一份陕西省2021-2023三年中考数学真题分类汇编-02填空题知识点分类,共19页。试卷主要包含了计算,分解因式等内容,欢迎下载使用。
这是一份江西省2021-2023三年中考数学真题分类汇编-02填空题知识点分类,共13页。试卷主要包含了我国海洋经济复苏态势强劲,2﹣a2= ,因式分解等内容,欢迎下载使用。