|试卷下载
搜索
    上传资料 赚现金
    2022-2023学年广东省东莞市翰林实验学校七年级(下)期中数学试卷(含解析)
    立即下载
    加入资料篮
    2022-2023学年广东省东莞市翰林实验学校七年级(下)期中数学试卷(含解析)01
    2022-2023学年广东省东莞市翰林实验学校七年级(下)期中数学试卷(含解析)02
    2022-2023学年广东省东莞市翰林实验学校七年级(下)期中数学试卷(含解析)03
    还剩14页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022-2023学年广东省东莞市翰林实验学校七年级(下)期中数学试卷(含解析)

    展开
    这是一份2022-2023学年广东省东莞市翰林实验学校七年级(下)期中数学试卷(含解析),共17页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2022-2023学年广东省东莞市翰林实验学校七年级(下)期中数学试卷

    一、选择题(本大题共10小题,共30.0分。在每小题列出的选项中,选出符合题目的一项)

    1.  的算术平方根是(    )

    A.  B.  C.  D.

    2.  下列图形不可以由平移得到的是(    )

    A.  B.  C.  D.

    3.  如图,若,则的度数是(    )

     

    A.  B.  C.  D.

    4.  下列点在第三象限的是(    )

    A.  B.  C.  D.

    5.  下列各数是无理数的是(    )

    A.  B.  C.  D.

    6.  体育课上老师按照如图所示的方式测量同学的跳远成绩,这里面蕴含的数学原理是(    )

    A. 垂线段最短
    B. 两点之间,线段最短
    C. 平面内,过一点有且只有一条直线与已知直线垂直
    D. 两点确定一条直线
     

    7.  如图,将向右平移得到,已知两点的距离为,则的长为(    )
     


     

     


     

    A.  B.  C.  D.

    8.  如图,在围棋盘上有三枚棋子,如果黑棋的位置用有序数对表示,黑棋的位置用有序数对表示,则白棋的位置可用有序数对表示.(    )

    A.
    B.
    C.
    D.

    9.  已知方程组的解满足,则的值为(    )

    A.  B.  C.  D.

    10.  将一副三角板按如图放置,则下列结论:如果,则有如果,则有如果,必有,其中正确的有(    )


    A.  B.  C.  D.

    二、填空题(本大题共5小题,共15.0分)

    11.  坐标系中点轴上,则            

    12.  是关于的二元一次方程,则       

    13.  把命题“对顶角相等”改写成“如果那么”的形式:______

    14.  如图,点的延长线上,对于下列给出的四个条件:

    能判断的有______填正确结论的序号

    15.  如图,动点在平面直角坐标系中按图中箭头所示方向运动,第次从原点运动到点,第次接着运动到点,第次接着运动到点按这样的运动规律,经过第次运动后,动点的坐标是       

     

    三、解答题(本大题共8小题,共75.0分。解答应写出文字说明,证明过程或演算步骤)

    16.  本小题
    计算:

    17.  本小题
    解下列方程组

    18.  本小题
    一个正数的平方根分别是的立方根是
    的值;
    的算术平方根.

    19.  本小题
    如图,已知,试说明
    证明:
    ______
    ______
    ______ ______ ______

    ______


    20.  本小题
    如图,在直角坐标系中,各点的坐标分别为
    若把向上平移个单位,再向左平移个单位得到,写出的坐标,并在图中画出平移后图形.
    求出的面积.


    21.  本小题
    如图,已知
    ,求的度数.
    猜想三者之间的关系并加说明.


    22.  本小题

    阅读下面的文字,解答问题:

    大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部地写出来,于是小明用来表示的小数部分,你同意小明的表示方法吗?

    事实上,小明的表示方法是有道理的,因为的整数部分是,将这个数减去其整数部分,差就是小数部分又例如:

    ,即

    的整数部分为,小数部分为

     请回答:

    的整数部分是______ ,小数部分是______

    如果的小数部分为的整数部分为,求的值;

    已知:,其中是整数,且,求的相反数.

     

    23.  本小题
    已知,直线分别与直线相交于点,并且

    如图,求证:
    如图,点在直线之间,连接,当时,求的度数;
    只保持中所求的度数不变,如图的平分线,交于点的平分线,作,则的度数是否改变?若不发生改变,请求出它的度数,若发生改变,请说明理由.

    答案和解析

     

    1.【答案】 

    【解析】解:
    的算术平方根是
    故选:
    根据算术平方根的定义即可解决问题.
    本题考查了算术平方根的定义,算术平方根的概念易与平方根的概念混淆而导致错误.
     

    2.【答案】 

    【解析】解:选项A中的图案是可以通过平移得到,选项D需要结合旋转得到.
    故选:
    根据平移变换的性质判断即可.
    本题考查利用平移设计图案,解题的关键是理解平移变换的定义.
     

    3.【答案】 

    【解析】

    【分析】
    本题考查了邻补角和平行线的性质,解题时注意:两直线平行,内错角相等.
    根据邻补角定义求出,根据平行线性质得出,代入即可.
    【解答】

    解:



    故选:  

    4.【答案】 

    【解析】解:在第二象限,故此选项不符合题意;
    B在第二象限,故此选项不符合题意;
    C在第一象限,故此选项不符合题意;
    D在第三象限,故此选项符合题意.
    故选:
    根据各象限内点的坐标特征对各选项分析判断利用排除法求解.
    本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限;第二象限;第三象限;第四象限
     

    5.【答案】 

    【解析】解:是整数,属于有理数,故此选项不符合题意;
    B是整数,属于有理数,故此选项不符合题意;
    C是无理数,故此选项符合题意;
    D是整数,属于有理数,故此选项不符合题意.
    故选:
    无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.
    此题主要考查了无理数的定义.解题的关键是掌握无理数的定义,其中初中范围内学习的无理数有:等;开方开不尽的数;以及像,等有这样规律的数.
     

    6.【答案】 

    【解析】解:由图可知,体育课上老师测量同学的跳远成绩,这里面蕴含的数学原理是垂线段最短.
    故选:
    根据垂线段的性质解答即可,垂线段的性质:垂线段最短.
    本题考查了垂线段的性质,垂线段:从直线外一点引一条直线的垂线,这点和垂足之间的线段叫做垂线段.垂线段的性质:垂线段最短.正确理解此性质,垂线段最短,指的是从直线外一点到这条直线所作的垂线段最短.它是相对于这点与直线上其他各点的连线而言.
     

    7.【答案】 

    【解析】

    【分析】
    本题考查平移的性质,解题的关键是熟练掌握基本知识,属于中考常考题型.
    根据平移的性质得到即可解决问题.
    【解答】
    解:向右平移得到两点的距离为



    故选:  

    8.【答案】 

    【解析】解:建立平面直角坐标系如图,
    白棋的坐标为
    故选D

    根据黑棋的坐标向上个单位确定出坐标原点,然后建立平面直角坐标系,再写出白棋的坐标即可.
    本题考查了坐标确定位置,根据已知点的坐标确定出坐标原点的位置是解题的关键.
     

    9.【答案】 

    【解析】解:
    得,



    解得
    故选:
    两方程相加可得,再结合已知可得出的数值.
    此题考查的是二元一次方程组,掌握二元一次方程组的解法是解决此题关键.
     

    10.【答案】 

    【解析】解:
    ,故正确;




    ,故正确;


    正确;



    ,故正确;
    故选:
    先根据余角的概念和同角的余角相等判断;再根据平行线的判定定理判断;然后根据平行线的判定定理判断;最后根据平行线的判定与性质判断
    本题考查的是平行线的性质和余角、补角的概念,掌握平行线的性质定理和判定定理是解题的关键.
     

    11.【答案】 

    【解析】解:轴上,

    解得
    故答案为
    让点的纵坐标为计算可得的值.
    考查点的坐标的相关知识;用到的知识点为:轴上的点的纵坐标为
     

    12.【答案】 

    【解析】解:是关于的二元一次方程,



    故答案为:
    根据二元一次方程的定义得到,求出,代入计算可得.
    此题考查了二元一次方程的定义:含有两个未知数,且含有未知数的项的次数都是的整式方程是二元一次方程,正确理解定义是解题的关键.
     

    13.【答案】如果两个角是对顶角,那么这两个角相等 

    【解析】

    【分析】
    命题中的条件是两个角是对顶角,放在“如果”的后面,结论是这两个角相等,应放在“那么”的后面.
    本题主要考查了将原命题写成条件与结论的形式,“如果”后面是命题的条件,“那么”后面是条件的结论,解决本题的关键是找到相应的条件和结论,比较简单.
    【解答】
    解:命题“对顶角相等”的题设为:对顶角,结论为:相等.
    故写成“如果那么”的形式是:如果两个角是对顶角,那么这两个角相等,
    故答案为:如果两个角是对顶角,那么这两个角相等.  

    14.【答案】 

    【解析】解:根据内错角相等,两直线平行即可证得,不能证明
    根据内错角相等,两直线平行即可证得
    根据同位角相等,两直线平行即可证得
    根据同旁内角互补,两直线平行,即可证得
    故答案为
    根据平行线的判定定理即可直接作出判断.
    本题考查了平行线的判定定理,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,不能遇到相等或互补关系的角就误认为具有平行关系,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.
     

    15.【答案】 

    【解析】解:由题意可得,点次运动后的横坐标为,纵坐标按次一周期的规律循环出现,

    动点的坐标是
    故答案为:
    由题意可得点的运动按次一周期的规律循环出现,再根据计算可得此题结果.
    此题考查了点的坐标规律问题的解决能力,关键是能根据题意得到点运动中坐标的循环出现规律.
     

    16.【答案】解:原式

    原式
     

    【解析】直接合并同类二次根式即可;
    先进行二次根式的乘法运算,再去绝对值,然后合并即可.
    本题考查了二次根式的混合运算:熟练掌握二次根式的性质、二次根式的乘法法则是解决问题的关键.
     

    17.【答案】解:
    代入得:

    代入中,得
    方程组的解为:

    得:
    得:

    代入中,
    方程组的解为 

    【解析】根据二元一次方程组的解法即可求出答案.
    本题考查二元一次方程组的解法,解题的关键是熟练运用方程组的解法,本题属于基础题型.
     

    18.【答案】解:由题意可知:
    合并同类项得:
    移项得:
    解得
    由题意可知:
    解得:

    的算术平方根是 

    【解析】根据平方根的性质即可求出的值;
    的值代入中即可求出它的算术平方根.
    本题考查了平方根、算术平方根、立方根的定义,解题的关键是正确理解算术平方根的定义,本题属于基础题型.
     

    19.【答案】对顶角相等        同位角相等,两直线平行   

    【解析】解:
    对顶角相等

    同位角相等,两直线平行


    故答案为:对顶角相等;;同位角相等,两直线平行;
    先根据对顶角相等可得,从而可得,然后利用同位角相等,两直线平行可得,从而可得,即可解答.
    本题考查了平行线的判定,平行公理及推论,根据题目的已知条件并结合图形进行分析是解题的关键.
     

    20.【答案】解:如图,即为所求作,

     

    【解析】利用平移的规律写出坐标,再画出图形即可.
    利用分割法求解,的面积看成一个矩形面积减三个三角形面积.
    本题考查作图平移变换,三角形的面积等知识,解题的关键是正确作出图形,属于中考常考题型.
     

    21.【答案】解:






    的度数为

    理由如下:
    可知,,即

    整理得: 

    【解析】,运用两直线平行,同旁内角互补,求得,再由,运用两直线平行,内错角相等,求得
    可知,,通过等量代换可得:,整理得:
    本题考查了平行线的性质,熟练运用平行线的性质是解题的关键.
     

    22.【答案】  

    【解析】解:,即
    的整数部分是,小数部分是
    故答案为:


    的小数部分


    的整数部分







    的整数部分是,小数部分是
    是整数,且


    的相反数是
    确定即可解答;
    利用估算分别得到,再代入计算即可;
    利用估算方法得到,确定的整数部分是,小数部分是,由此得到,计算出的值即可.
    此题考查了无理数的估算,正确掌握无理数估算的方法是解题的关键.
     

    23.【答案】证明:


    解:






    解:的度数不发生改变,理由如下,
    得,

    分别平分














     

    【解析】先由邻补角得到,然后结合得到,最后得证
    先由得到,即,再结合得到,最后结合已知条件得到的大小;
    先由得到,然后结合角平分线的定义得到,再结合得到,最后由求得的大小.
    本题考查了平行线的性质与判定、角平分线的定义,解题的关键是熟知平行线的判定与性质求得相关的角度大小.
     

    相关试卷

    2023年广东省东莞市翰林实验学校中考数学三模试卷(含解析): 这是一份2023年广东省东莞市翰林实验学校中考数学三模试卷(含解析),共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023年广东省东莞市翰林实验学校中考数学二模试卷(含解析): 这是一份2023年广东省东莞市翰林实验学校中考数学二模试卷(含解析),共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2022-2023学年广东省东莞市七年级(下)期中数学试卷(含解析): 这是一份2022-2023学年广东省东莞市七年级(下)期中数学试卷(含解析),共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map