考点04:方程的应用问题2023届中考备考数学(解析版)
展开
这是一份考点04:方程的应用问题2023届中考备考数学(解析版),文件包含考点04方程的应用问题2023届中考备考数学A4解析版docx、考点04方程的应用问题2023届中考备考数学A3word版docx等2份试卷配套教学资源,其中试卷共25页, 欢迎下载使用。
考点04:方程的应用问题2023届中考备考数学【知识点1】销售利润问题1.某书店购进甲、乙两种畅销书共20包花费资金3.45万元,已知甲种书进价为每包0.2万元,其销售利润率为25%;乙种书进价为每包0.15万元,其销售利润率为20%.全部售完后,求该书店共获得的利润.(利润=售价﹣成本,利润率=(售价﹣成本)÷成本×100%)2.某商家在“5.17世界电信日”当天对某款手机进行打折促销,相比前一天销量增加了20%,销售额反而下降了16%,求“5.17世界电信日”当天商家对该款手机打几折销售.3.甲、乙两种商品原来的单价和为100元.因市场变化,甲商品降价10%,乙商品提价40%,调价后,两种商品的单价和比原来的单价和提高了20%.问甲、乙两种商品原来的单价各是多少元?4.防控新冠肺炎疫情期间,某药店在市场抗病毒药品紧缺的情况下,将某药品提价后,使价格翻一番(即为原价的2倍),物价部门查处后,其价格降到比原价高10%,已知该商品原价为m,求该药品降的百分比是多少?5.小王离岗创业,销售某品牌电脑,1月份的销售量为100台,每台电脑售价相同,2月份的销售量比1月份增加10%,每台售价比1月份降低了400元,2月份与1月份的销售总额相同,求每台电脑1月份的售价.6.一电商出售运动包时,将一种运动双肩包按进价提高40%作为标价,然后再按标价的8.5折出售,这样电商每卖出一个运动双肩包可赚取38元.试问这种运动双肩包每个进价是多少元?7.在抗击新冠肺炎疫情期间,某社区购买酒精和消毒液两种消毒物资,供居民使用.第一次购买酒精和消毒液若干,酒精每瓶10元,消毒液每瓶5元,共花费了350元;第二次又购买了与第一次相同数量的酒精和消毒液,由于酒精和消毒液每瓶价格分别下降了30%和20%,只花费了260元.求每次购买的酒精和消毒液分别是多少瓶?8.为加强美育教育,学校计划开设书法特色课程,需购买钢笔、毛笔共100支,据调查,某商城每支钢笔的价格为20元,每支毛笔的价格为30元,经双方议价,按9折销售,学校共付款2430元,求购买钢笔、毛笔各多少支?9.某商店对A,B两种商品在进价的基础上提高50%作为标价出售.春节期间,该商店对A,B两种商品开展促销活动,活动方案如下:商品AB标价(元/件)150225春节期间每件商品出售的价格按标价降价10%按标价降价a%(1)商品B降价后的售价为 元(用含a的代数式表示);(2)不考虑其他成本,在春节期间商店卖出A种商品20件,B种商品10件,获得总利润1000元,试求a的值.10.列二元一次方程组解应用题:某大型超市投入15000元资金购进A、B两种品牌的矿泉水共600箱,矿泉水的成本价和销售价如表所示:类别/单价成本价(元/箱)销售价(元/箱)A品牌2032B品牌3550(1)该大型超市购进A、B品牌矿泉水各多少箱?(2)全部销售完600箱矿泉水,该超市共获得多少利润?11.双十一购物节.某网络商城推出了“每满300减40”的活动,某品牌微波炉按进价提高50%后标价,再按标价的八折销售,顾客在双十一期间购买该微波炉,最终付款640元.(1)将表格补充完整;应付金额(元)0≤x<300 600≤x<900900≤x<1200减免金额(元)040 120(2)商家卖一个微波炉赚多少元?12.超市分两次购进甲、乙两种商品若干件,进货总价如下表: 甲乙第一次1200元900元第二次总共不超过1262元(1)第一次购进甲商品件数是乙商品件数的2倍,且甲商品的单价比乙商品的单价便宜10元/件,求甲商品的单价;(2)第二次共购进50件,两种商品的单价与第一次相比,甲提高了10%,乙降价了10%,问此次最多购进乙商品多少件?13.2020年10月1日,中国﹣安徽滑板公开赛在中国刷业之都、安徽省体育滑板特色小镇﹣﹣潜山市源潭镇举行,这一运动的兴起也带动了源潭镇的滑板销售.某超市第一次用3000元购进了若干块滑板,很快卖完,由于该滑板畅销,第二次购进时,每块滑板的批发价比第一次提高了20%,所以超市用6000元购进的滑板数量比第一次购进的数量只多了20块,问:(1)第一次购进的滑板每块批发价是多少元?(2)如果这两次所购滑板的售价相同,且全部售完后总利润不低于10%,那么每块滑板的售价至少是多少元? 【知识点2】和差倍分问题14.《算法统宗》是中国古代数学名著之一,其中记载了这样的数学问题:“用绳子测水井深度,绳长的三分之一比井深多4尺;绳长的四分之一比井深少1尺,问绳长、井深各是多少尺”.若设这个问题中的绳长为x尺,求x的值.15.中国古代算书《算法统宗》中有这样一道题:甲赶群羊逐草茂,乙拽肥羊随其后,戏问甲及一百否?甲云所说无差谬,若得这般一群凑,再添半群小半(注:四分之一的意思)群,得你一只来方凑.玄机奥妙谁参透?大意是说:牧羊人赶着一群羊去寻找草长得茂盛的地方放牧,有一个过路人牵着1只肥羊从后面跟了上来,他对牧羊人说你赶的这群羊大概有100只吧?牧羊人答道:如果这一群羊加上1倍,再加上原来羊群的一半,又加上原来这群羊的四分之一,连你牵着的这只肥羊也算进去,才刚好满100只.你知道牧羊人放牧的这群羊一共有多少只吗?16.某校组织爱心捐书活动,准备将一批捐赠的书打包寄往贫困地区,其中每包书的数量相等,第一次他们领来这批书的,结果打了23包还多20本,第二次他们把剩下的书全部取来,连同第一次打包剩下的一起,刚好又打了12个包,求这批捐赠的书一共多少本?17.我国古代问题:以绳测井,若将绳三折测之,绳多四尺,若将绳四折测之,绳多一尺,绳长、井深各几何?这段话的意思是:用绳子量井深,把绳三折来量,井外余绳四尺,把绳四折来量,井外余绳一尺,绳长、井深各几尺?18.我市市区去年年底共享单车拥有量是15万辆,为了缓解城区停车拥堵状况,今年年初,市交通部门要求供应商到明年年底控制共享单车拥有量为14.05万辆,若每年报废的共享单车数量是上一年年底共享单车拥有量的10%,假定每年新增共享单车数量相同,问:从今年年初起每年新增共享单车数量是多少万辆?19.中国古代数学著作《算法统宗》中有这样一题:“三百七十八里关,初日健步不为难,次日脚痛减一半,六朝才得到其关.”其大意是:有人要去某关口,路程为378里,第一天健步行走,从第二天起,由于脚痛,每天走的路程都为前一天的一半,一共走了六天才到达目的地.请你求出此人第六天的路程.20.力“皖”狂澜,新冠肺炎期间,安徽共出动八批,共计1362位医护人员驰援武汉,他们是新时代最可爱的人.3月19日,第二批和第八批医护人员共130人乘坐飞机返回合肥,其中第二批人数是第八批人数的3倍还多10人,第八批安徽共出动了多少名医护人员?21.《九章算术》中记载:“今有甲乙二人持钱不知其数,甲得乙半而钱五十,乙得甲太半而亦钱五十.问:甲、乙持钱各几何?”大意是:甲、乙二人带着钱,不知是多少,若甲得到乙的钱数的,则甲的钱数为50;若乙得到甲的钱数的,则乙的钱数也能为50,问甲、乙各有多少钱?22.元朝著名数学家朱世杰在《四元玉鉴》中有一首诗:“我有一壶酒,携着游春走,遇店添一倍,逢友饮一斗,店友经三处,没了壶中酒,借问此壶中,当原多少酒?”23.为了支援湖北抗击新型冠状病毒,我县作为农业大县,欲分两次向湖北“疫”区捐赠生活物资(大米和蔬菜).根据疫情的防控形势,第一批共捐赠了21吨生活物资;第二批生活物资中的蔬菜比第一批生活物资中的蔬菜增加了6吨,这时第二批生活物资中的蔬菜吨数正好是本批物资中大米吨数的2倍,(第二批生活物资中的大米与第一批生活物资中的大米吨数相同),求我县在这次抗疫中捐赠的大米和蔬菜各多少吨? 【知识点3】行程问题24.“今有善行者行一百步,不善行者行六十步”(出自《九章算术》)意思是:同样的时间段里,走路快的人能走100步,走路慢的人只能走60步,假定两者步长相等,若不善行者先行200步,善行者追之,不善行者再行600步,请问谁在前面,两人相隔多少步?25.一个通讯员骑摩托车要在规定的时间内把文件送到.他骑摩托车的速度是每小时36千米,结果早到20分钟,若每小时30千米,就迟到12分钟.求规定时间是多少?这段路程是多少?26.《计算之书》是意大利中世纪著名数学家斐波那契(公元1175﹣1250年)的经典之作.书中记载了一道非常有趣的“狐跑犬追”问题:在相同的时间里,猎犬每跑9m,狐狸跑6m.若狐狸与猎犬同时起跑时狐狸在猎犬前面50m,问狐狸跑多少距离后被猎犬追上?27.古代名著《算学启蒙》中有这样一个问题:“良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何追及之.”译文:跑得快的马平均每天能跑240里,跑得慢的马平均每天能跑150里.如果慢马先行12天,快马多少天能够追上慢马?请解答这个问题.28.我国古典文学名著《西游记》讲述了孙悟空、猪八戒、沙和尚保护唐僧西天取经,沿途降妖除魔,历经九九八十一难,到达西天取得真经修成正果的故事.现请你欣赏下列描述孙悟空追妖精的数学诗:悟空顺风探妖踪,千里只行四分钟,归时四分行六百,风速多少才称雄?解释:孙悟空顺风去查妖精的行踪,4分钟就飞跃1000里,逆风返回时4分钟走了600里,问风速是多少?解答上述问题.29.《九章算术》是中国传统数学最重要的著作之一,其中《均输》卷记载了一道有趣的数学问题:“今有凫(注释:野鸭)起南海,九日至北海;雁起北海,六日至南海.今凫雁俱起,问何日相逢?”译文:“野鸭从南海起飞,9天飞到北海;大雁从北海起飞,6天飞到南海.现野鸭与大雁分别从南海和北海同时起飞,问经过多少天相遇”.请列方程解答上面问题.30.《九章算术》中有这样一道题,原文如下:今有凫起南海,七日至北海;雁起北海,九日至南海,今凫雁俱起,问何日相逢?译文为:野鸭从南海起飞,7天飞到北海;大雁从北海起飞,9天飞到南海野鸭与大雁从南海和北海同时起飞相向而行,经过几天相遇?请解答上述问题.31.为了打通城市和景区的交通线路,某市利用高架桥和钻隧道等技术,缩短了城市和景区的距离,使得两地总里程比原来缩短了26千米,修建新路线后高铁行驶速度比原来火车行驶速度的3倍还多9千米,原来的火车行完全程用时3小时,现在高铁用时50分钟,求开通后高铁的平均速度是多少千米/小时?32.一轮船航行于两个码头之间,逆水需10小时,顺水需6小时.已知该船在静水中每小时航行12千米,求水流速度和两码头间的距离.33.甲乙两人同驾一辆汽车出游,各匀速驾驶一半路程,共用3小时.到达目的地后,甲对乙说:“我用你所花的时间,可以行驶180km.”乙对甲说:“我用你所花的时间,只能行驶80km.”试求乙驾车的时长是多少小时.34.中秋节期间,小明计划外出游玩,他有两种出行线路:线路一是自己开车;线路二是先坐高铁再骑行;其中线路二的路程是线路一的2倍,且乘坐高铁部分路程占线路二全程的95%,剩余路程为骑行路程.已知高铁平均速度是开车平均速度的5倍,若最终两种出行方式所花费时间一致,则开车速度是骑行速度的多少倍?35.王老师从学校出发,到距学校2000m的某商场去给学生买奖品,他先步行了800m后,换骑上了共享单车,到达商场时,全程总共刚好花了15min.已知王老师骑共享单车的平均速度是步行速度的3倍(转换出行方式时,所需时间忽略不计).求王老师步行和骑共享单车的平均速度分别为多少? 【知识点4】盈亏问题36.某数学兴趣小组研究我国古代《算法统宗》里这样一首诗:我问开店李三公,众客都来到店中,一房五客多五客,一房七客一房空.诗中后两句的意思是:如果每一间客房住5人,那么有5人无房住;如果每一间客房住7人,那么就空出一间房.求该店有客房多少间?房客多少人?37.今年开学,由于疫情防控的需要,某学校统一购置口罩,本周该学校给(1)班全体学生配备了一定数量的口罩,若每个学生发3个口罩,则多30个口罩,若给每个学生发5个口罩,则少50个口罩,请问该班有多少名学生?38.《孙子算经》是我国传统数学的重要著作之一,其中记载的“荡杯问题”非常有趣.原题是今有妇人河上荡杯,津吏问日:“杯何以多?”妇人日:“有客.”津吏曰:“客几何?“妇人日:“两人共饭,三人共羹,四人共肉,凡用杯六十五.不知客几何?“大意:一个妇女在河边洗碗,河官问:“洗多少碗?有多少客?”妇女答:“洗65只碗,客人二人共用一只饭碗,三人共用一只汤碗,四人共用一只肉碗.问:有多少客人用餐?”请解答上述问题.39.中国人民很早就在生产生活中发现了许多有趣的数学问题,其中《孙子算经》中有个问题,原文:今有三人共车,二车空;二人共车,九人步,问人与车各几何?译文为:今有若干人乘车,每3人共乘一车,最终剩余2辆车,若每2人共乘一车,最终剩余9个人无车可乘,问共有多少人,多少辆车?40.我国古代数学著作《九章算术》中记载:“今有人共买鸡,人出九;盈十一;人出六;不足十六,问人数、鸡价各几何?”其大意是:今有人合伙买鸡,若每人出9钱,则多11钱:若每人出6钱,则差16钱,问合伙人数、鸡价各是多少?41.《九章算术》中有这样一道题,原文如下:“今有人共买鸡,人出九,盈十一;人出六,不足十六.问人数、鸡价各几何?”意思为:有几个人共同出钱买鸡,每人出九钱,则多了十一钱;每人出六钱,则少了十六钱.那么有几个人共同买鸡?鸡的价钱是多少?请解答上述问题.42.《孙子算经》中记载:“今有三人共车,二车空二人共车,九人步,问人与车各何?”译文大意为:令有若干人乘车,每三人乘一辆车,最终剩余2辆车;若每2人共乘一辆车,最终剩余9个人无车可乘,问有多少人,多少辆车?请解答上述问题.43.我国古代数学著作《孙子算经》卷中记载有“多人共车”问题,原文如下:“今有三人共车,二车空;二人共车,九人步,问人与车各几何?”意思是:今有若干人乘车,每3人乘1车,最终剩余2辆车;若每2人共乘1车,最终剩余9个人无车可乘,问有多少人乘车?44.《孙子算经》是我国传统数学的重要著作之一,其中记载的“荡杯问题”很有趣.其内容为:“2人同吃一碗饭,3人同吃一碗羹,4人同吃一碗肉,共用65个碗,问有多少客人.”请你解答这个问题.45.大位《直指算法统宗》:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁.意思是:有100个和尚分100个馒头,如果大和尚一人分3个,小和尚3人分一个,正好分完,试问大、小和尚各有多少人? 【知识点5】工程问题46.根据疫情防控工作需要,某社区组织甲、乙两支医疗队开展疫苗接种工作,甲队比乙队每小时多接种30人,甲队接种2250人与乙队接种1800人用时相同.问甲队每小时接种多少人?47.为全面推进“三供一业”分离移交工作,甲、乙两个工程队承揽了某社区2400米的电路管道铺设工程.已知甲队每天铺设管道的长度是乙队每天铺设管道长度的1.5倍,若两队各自独立完成1200米的铺设任务,则甲队比乙队少用10天.(1)求甲、乙两工程队每天分别铺设电路管道多少米;(2)若甲队参与该项工程的施工时间不得超过20天,则乙队至少施工多少天才能完成该项工程?48.一项工程,甲单独做要10天,乙单独做要15天,丙单独做要20天.三人合做期间,甲因故请假,工程6天完工,请问甲请了几天假?49.甲、乙两个施工队共同完成某区域绿化改造工程,乙队先单独做3天后,再由两队合作7天完成全部工程.已知乙队单独完成此项工程所需天数是甲队单独完成此项工程所需天数的2倍,求甲、乙两个施工队单独完成此项工程各需多少天?50.市政府为美化城市环境,计划在某区城种植树木2000棵,由于青年志愿者的加入,实际每天植树棵数是原计划的2倍,结果提前4天完成任务.求实际每天植树多少棵?51.甲、乙两个车间分别承担一种口罩生产的第一道工序和第二道工序,已知甲车间先开工完成了10万个,乙车间才开始生产,如果在相同时间内,甲车间能完成6万个,乙车间能完成8万个,求乙车间完成多少万个时恰好赶上甲车间的进度?52.在某一城市美化工程招标时,有甲、乙两个工程队投标.经测算:甲队单独完成这项工程需要60天,乙队单独完成这项工程需要90天;若由甲队先做20天,剩下的工程由甲、乙两队合作完成.(1)甲、乙两队合作多少天?(2)甲队施工一天需付工程款3.5万元,乙队施工一天需付工程款2万元.若该工程计划在70天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成该工程省钱?还是由甲乙两队全程合作完成该工程省钱?53.政府准备修建一条公路,若由甲工程队单独修需3个月完成,每月耗资12万元;若由乙工程队单独修建需6个月完成,每月耗资5万元.若由甲工程队先做一段时间,剩下的由乙工程队单独完成,一共用了4个月完成修建任务,这样安排共耗资多少万元?(时间按整月计算)54.今年是脱贫攻坚最后一年,某镇拟修一条连通贫困山区村的公路,现有甲、乙两个工程队.若甲、乙合作,36天可以完成,需用600万元;若甲单独做20天后,剩下的由乙做,还需40天才能完成,这样所需550万元.(1)求甲、乙两队单独完成此项工程各需多少天?(2)求甲、乙两队单独完成此项工程各需多少万元?55.某高速公路要对承建的工程进行招标,现在甲、乙两个工程队前来投标,根据两队的申报材料估计:若甲、乙两队合作,24天可以完成;若由甲队单独做20天后,余下的工程由乙队做,还需40天完成,求甲、乙两队单独完成这项工程各需多少天?56.甲、乙两工程队共同修建150km的公路,原计划30个月完工.实际施工时,甲队通过技术创新,施工效率提高了50%,乙队施工效率不变,结果提前5个月完工.甲、乙两工程队原计划平均每月分别修建多长?57.某口罩厂工人一天可包装口罩3000箱,现厂里需要提前供货,要求工人每小时比原计划多装20%,这样可以提前4小时完成任务,求原计划每小时装多少箱口罩?58.甲、乙两支工程队修建公路,已知甲队每天修路的长度比乙队每天修路的长度多50米,甲队修路600米与乙队修路300米用的天数相同.(1)求甲、乙两支工程队每天各修路多少米?(2)计划修建长度为3600米的公路,因工程需要,甲、乙两支工程队都要参与这条公路的修建,若甲队每天所需费用为1.2万元,乙队每天所需费用为0.5万元,在总费用不超过40万元的情况下,至少安排乙队施工几天?59.合肥都市圈建立以来,政府不断的加大对都市圈内的交通投入,某工程队承包修建一条1800m的道路,为了尽快实现合肥都市圈“1小时通勤圈”和“1小时生活圈”,该工程队采用新的施工方式,实际每天修建道路的长度是原计划的1.5倍,结果提前12天完成了任务,问原计划每天修建道路多少m?60.某市在“畅通二环”建设中对一条道路进行升级改造,决定由甲、乙两个工程队来完成.已知甲工程队单独完成这项工作需120天,甲工程队单独工作30天后,乙工程队参与合做,两队又共同工作了36天完成这项工作.(1)求乙工程队单独完成这项工作需要多少天?(2)因工期的需要,将此项工程分成两部分,甲做其中一部分用了x天完成,乙做另一部分用了y天完成,其中x、y均为小于50的正整数,求甲、乙两队各做了多少天?
相关试卷
这是一份考点04 一次方程(组)与其应用-备战2023届中考数学一轮复习考点梳理(解析版),共41页。
这是一份考点04 一次方程(组)与其应用-备战2023届中考数学一轮复习考点梳理(解析版),共41页。
这是一份初中数学中考复习 专题02 一次方程(组)的含参及应用问题(解析版),共23页。