【百强名校】 2023届新高考地区百强名校新高考数学模拟考试压轴题精编卷(三)(新高考通用)原卷版
展开【百强名校】2023届新高考地区百强名校
新高考数学模拟考试压轴题精编卷(三)(新高考通用)
一、单选题
1.(2023·重庆沙坪坝·高三重庆南开中学校考阶段练习)已知角,满足,,则( ).
A. B. C.1 D.2
2.(2023春·河北石家庄·高三石家庄二中校考阶段练习)若,,,则实数a,b,c的大小关系为( )
A. B.
C. D.
3.(2023春·河北石家庄·高三石家庄二中校考阶段练习)设是平面直角坐标系中关于轴对称的两点,且.若存在,使得与垂直,且,则的最小值为( )
A.1 B. C.2 D.
4.(2023春·山东济南·高三山东省实验中学校考开学考试)已知,则的大小关系为( )
A. B.
C. D.
5.(2023春·山东济南·高三山东省实验中学校考开学考试)已知双曲线的右焦点为,过点作一条渐近线的垂线,垂足为,若的重心在双曲线上,则双曲线的离心率为( )
A. B. C. D.
6.(2023春·湖南长沙·高三湖南师大附中校考阶段练习)如图,在中,已知,,E,F分别是边AB,AC上的点,且,,其中,,且,若线段EF,BC的中点分别为M,N,则的最小值为( )
A. B. C. D.
7.(2023春·浙江杭州·高三浙江省杭州第二中学校考开学考试)已知数列的通项公式为,前项和为,若实数满足对任意正整数恒成立,则实数的取值范围是( )
A. B. C. D.
8.(2023春·湖南长沙·高三湖南师大附中校考阶段练习)已知函数,正数满足,则的最小值( )
A. B. C. D.
9.(2023·重庆沙坪坝·高三重庆南开中学校考阶段练习)如图,椭圆的左焦点为,右顶点为A,点Q在y轴上,点P在椭圆上,且满足轴,四边形是等腰梯形,直线与y轴交于点,则椭圆的离心率为( ).
A. B. C. D.
10.(2023春·浙江杭州·高三浙江省杭州第二中学校考开学考试)已知为单位向量,,,当取到最大值时,等于( )
A. B. C. D.
二、多选题
11.(2023春·河北石家庄·高三石家庄二中校考阶段练习)已知函数图像过点,且存在,当时,,则( )
A.的周期为
B.图像的一条对称轴方程为
C.在区间上单调递减
D.在区间上有且仅有4个极大值点
12.(2023春·湖南长沙·高三湖南师大附中校考阶段练习)2021年3月30日,小米正式开始启用具备“超椭圆”数学之美的新logo(如图所示),设计师的灵感来源于曲线.当时,下列关于曲线的判断正确的有( )
A.曲线关于轴和轴对称
B.曲线所围成的封闭图形的面积小于8
C.设,直线交曲线于两点,则的周长小于8
D.曲线上的点到原点的距离的最大值为
13.(2023春·湖南长沙·高三湖南师大附中校考阶段练习)已知球O的半径为4,球心O在大小为的二面角内,二面角的两个半平面所在的平面分别截球面得两个圆,,若两圆,的公共弦AB的长为4,E为AB的中点,四面体得体积为V,则一定正确的是( )
A.O,E,,四点共圆 B.
C. D.V的最大值为
14.(2023春·山东济南·高三山东省实验中学校考开学考试)过直线上一点作圆的切线,切点分别为,则( )
A.若直线,则
B.的最小值为
C.直线过定点
D.线段的中点的轨迹长度为
15.(2023春·浙江杭州·高三浙江省杭州第二中学校考开学考试)已知实数a,b,c满足,则下列关系式中可能成立的是( )
A. B. C. D.
16.(2023春·河北石家庄·高三石家庄二中校考阶段练习)已知双曲线的左、右焦点分别为,过的直线交C的右支于点A,B,若,则( )
A. B.C的渐近线方程为
C. D.与面积之比为2∶1
17.(2023·重庆沙坪坝·高三重庆南开中学校考阶段练习)已知数列满足,,,则下列结论正确的有( ).
A.数列是递增数列 B.
C. D.
18.(2023·重庆沙坪坝·高三重庆南开中学校考阶段练习)已知,为函数图象上两点,且轴,直线,分别是函数图象在点处的切线,且,的交点为,,与轴的交点分别为,则下列结论正确的是( ).
A. B.
C.的面积 D.存在直线,使与函数图象相切
19.(2023春·山东济南·高三山东省实验中学校考开学考试)已知在三棱锥中,,,,,设二面角的大小为,是的中点,当变化时,下列说法正确的是( )
A.存在,使得
B.存在,使得平面
C.点在某个球面上运动
D.当时,三棱锥外接球的体积为
20.(2023春·浙江杭州·高三浙江省杭州第二中学校考开学考试)直线与函数的图像有4个不同的交点,并且从左到右四个交点分别为,它们的横坐标依次是,则下列关系式正确的是( )
A. B.
C. D.存在使得A点处切线与点处切线垂直
三、填空题
21.(2023春·湖南长沙·高三湖南师大附中校考阶段练习)已知函数,若关于的不等式恒成立,则实数的取值范围为______
22.(2023春·山东济南·高三山东省实验中学校考开学考试)已知数列满足:,记,且,则整数_____.
23.(2023春·河北石家庄·高三石家庄二中校考阶段练习)已知椭圆的焦距为2,过椭圆的右焦点且不与两坐标轴平行的直线交椭圆于,两点,若轴上的点满足且恒成立,则椭圆离心率的取值范围为______.
24.(2023春·浙江杭州·高三浙江省杭州第二中学校考开学考试)已知关于的不等式恒成立,则的取值范围是_____.
25.(2023春·河北石家庄·高三石家庄二中校考阶段练习)若函数只有一个极值点,则的取值范围是___________.
四、双空题
26.(2023·重庆沙坪坝·高三重庆南开中学校考阶段练习)已知抛物线的焦点为F,准线交x轴于点D,过点F作倾斜角为(为锐角)的直线交抛物线于A,B两点,如图,把平面沿x轴折起,使平面平面,则三棱锥体积为__________;若,则异面直线,所成角的余弦值取值范围为__________.
五、解答题
27.(2023春·湖南长沙·高三湖南师大附中校考阶段练习)已知双曲线的顶点为,,过右焦点作其中一条渐近线的平行线,与另一条渐近线交于点,且.点为轴正半轴上异于点的任意点,过点的直线交双曲线于C,D两点,直线与直线交于点.
(1)求双曲线的标准方程;
(2)求证:为定值.
28.(2023春·浙江杭州·高三浙江省杭州第二中学校考开学考试)已知函数,
(1)时,若恒成立,求的取值范围;
(2),在上有极值点,求证:.
29.(2023春·浙江杭州·高三浙江省杭州第二中学校考开学考试)已知抛物线上一点,圆:,过作圆的两条切线,切点分别为A,B.
(1)求直线的方程:
(2)直线分别与抛物线交于两点,求线段的长度.
30.(2023春·河北石家庄·高三石家庄二中校考阶段练习)已知双曲线的实轴长为4,左、右顶点分别为,经过点的直线与的右支分别交于两点,其中点在轴上方.当轴时,
(1)设直线的斜率分别为,求的值;
(2)若,求的面积.
31.(2023春·湖南长沙·高三湖南师大附中校考阶段练习)已知函数.
(1)当时,求证:;
(2)若对恒成立,求.
32.(2023春·山东济南·高三山东省实验中学校考开学考试)已知函数
(1)当时,求的单调区间;
(2)若有两个零点,求的范围,并证明
33.(2023春·山东济南·高三山东省实验中学校考开学考试)已知椭圆的左、右焦点分别为,过点作直线(与轴不重合)交于两点,且当为的上顶点时,的周长为8,面积为
(1)求的方程;
(2)若是的右顶点,设直线的斜率分别为,求证:为定值.
34.(2023春·河北石家庄·高三石家庄二中校考阶段练习)已知函数.
(1)讨论的单调性;
(2)设是两个不相等的正数,且,证明:.
35.(2023·重庆沙坪坝·高三重庆南开中学校考阶段练习)已知函数,.
(1)当时,求函数的单调区间;
(2)若,设直线l为在处的切线,且l与的图像在内有两个不同公共点,求实数a的取值范围.
36.(2023·重庆沙坪坝·高三重庆南开中学校考阶段练习)已知双曲线的左、右焦点分别为,,左顶点为,点M为双曲线上一动点,且的最小值为18,O为坐标原点.
(1)求双曲线C的标准方程;
(2)如图,已知直线与x轴的正半轴交于点T,过点T的直线交双曲线C右支于点B,D,直线AB,AD分别交直线l于点P,Q,若O,A,P,Q四点共圆,求实数m的值.
【百强名校】 2023届新高考地区百强名校新高考数学模拟考试压轴题精编卷(三)(新高考通用)解析版: 这是一份【百强名校】 2023届新高考地区百强名校新高考数学模拟考试压轴题精编卷(三)(新高考通用)解析版,共51页。试卷主要包含了单选题,多选题,填空题,双空题,解答题等内容,欢迎下载使用。
【百强名校】 2023届新高考地区百强名校新高考数学模拟考试压轴题精编卷(五)(新高考通用): 这是一份【百强名校】 2023届新高考地区百强名校新高考数学模拟考试压轴题精编卷(五)(新高考通用),文件包含百强名校2023届新高考地区百强名校新高考数学模拟考试压轴题精编卷五新高考通用解析版docx、百强名校2023届新高考地区百强名校新高考数学模拟考试压轴题精编卷五新高考通用原卷版docx等2份试卷配套教学资源,其中试卷共60页, 欢迎下载使用。
【百强名校】 2023届新高考地区百强名校新高考数学模拟考试压轴题精编卷(三)(新高考通用): 这是一份【百强名校】 2023届新高考地区百强名校新高考数学模拟考试压轴题精编卷(三)(新高考通用),文件包含百强名校2023届新高考地区百强名校新高考数学模拟考试压轴题精编卷三新高考通用解析版docx、百强名校2023届新高考地区百强名校新高考数学模拟考试压轴题精编卷三新高考通用原卷版docx等2份试卷配套教学资源,其中试卷共56页, 欢迎下载使用。