专题10 平行线中点模型与雨伞模型-2023年中考数学一轮复习热点题型与方法精准突破(原卷版)
展开专题10 平行线中点模型与雨伞模型
平行线中点模型概述:平行线之间夹中点,通过延长过中点的线段与平行线相交,从而构造一对全等三角形,并将已知条件中的线段和角进行转移。
平行线中点模型:已知AB∥CD,点E,F分别在直线AB、CD上,点O为线段EF的中点,延长PO交CD于点Q,则∆POE ≌ ∆QOF
证明: ∵AB∥CD ∴∠PEO =∠OFQ
∵点O为线段EF的中点 ∴EO=OF
在∆POE和∆QOF中
∠PEO =∠OFQ
EO=OF
∠POE =∠QOF
∴∆POE ≌ ∆QOF(ASA)
雨伞模型:如图AP平分∠BAC,BD⊥AP,垂足为点D,延长BD交AC于点C,
则∆ABD ≌ ∆ACD,AB=AC,BD=CD
证明:∵AP平分∠BAC ∴∠BAD=∠CAD
∵BD⊥AP ∴∠BDA=∠CDA
在∆ABD和∆ACD中
∠BAD=∠CAD
AD=AD
∠BDA=∠CDA
∴∆ABD ≌ ∆ACD(ASA)
∴AB=AC,BD=CD
【平行线中点模型过关练】
1.如图,正方形的边长为,在正方形的右侧作矩形,点在边的延长线上,,点,,在同一条直线上,,连接,点是的中点,则线段的长为( )
A. B. C. D.
2.矩形ABCD与矩形CEFG如图放置,点B、C、E共线,点C、D、G共线,连接AF,取AF的中点H,连接GH.若BC=EF=3,CD=CE=1,则GH=_______.
3.如图,□ABCD的顶点C在等边的边BF上,点E在AB的延长线上,G为DE的中点,连接CG.若,,则BG的长为______.
4.如图,▱ABCD的顶点C在等边△BEF的边BF上,点E在AB的延长线上,G为DE的中点,连接CG.若AD=3,AB=CF=2,则CG的长为 _____.
5.如图,菱形ABCD中,E、F分别是BC、CD的中点,过点E作EG⊥AD于G,连接GF.若∠A=80°,则∠DGF的度数为___________.
6.如图,已知等边三角形的边长为4,过边上一点P作于点E,Q为延长线上一点,取,连接,交于M,则的长为______.
7.如图,在等边△ABC中,点D是边AB上一点,E是BC延长线上一点,CE=DA,连接DE交AC于点F,过点D作DG⊥AC于点G,过点D作DH∥BC交AC于点H.
(1)求证:AG=AD;
(2)求证:DF=EF;
(3)若CF=CE,S△ADG=2,求△DGF的面积.
8.(1)老师在课上给出了这样一道题目:如图(1),等边△ABC边长为2,过AB边上一点P作PE⊥AC于E,Q为BC延长线上一点,且AP=CQ,连接PQ交AC于D,求DE的长.
小明同学经过认真思考后认为,可以通过过点P作平行线构造等边三角形的方法来解决这个问题.请根据小明同学的思路直接写出DE的长.
(2)【类比探究】
老师引导同学继续研究:
①等边△ABC边长为2,当P为BA的延长线上一点时,作PE⊥CA的延长线于点E ,Q为边BC上一点,且AP=CQ,连接PQ交AC于D.请你在图(2)中补全图形并求DE的长.
②已知等边△ABC,当P为AB的延长线上一点时,作PE⊥射线AC于点E, Q为哪一个(①BC边上;②BC的延长线上;③CB的延长线上)一点,且AP=CQ,连接PQ交直线AC于点D,能使得DE的长度保持不变.( 直接写出答案的编号)
9.在数学综合实践课上,老师给出了下列问题.
(1)探究结论
在图1中,,点P是两平行线之间的一点,则,,之间的关系是_______.
(2)应用结论
在图2中,,PB平分,,若为等腰三角形,求的度数_______.
(3)拓展延伸
在图3中,,点P是的中点,.试判断AB,AC,BD之间有什么关系,并说明理由.
10.【问题情境】兴趣小组活动时,老师提出了如下问题,如图1,在△ABC中, AB=16,AC=10,求BC边上的中线AD的取值范围.经过小组合作交流,卓越小组得到了如下的解决方法:延 AD至点E,使DE=AD,连接BE.勤思小组得到的方法是,过点B作直线AC的平行线BE,并交AD的延长线于点E.请结合两个小组提供的方法思考:
(1)图1中,BC边上的中线AD长度的取值范围是 ;
(2)【灵活运用】如图 2,在四边形ABCD中,AB∥CD,点E是BC的中点,若AE是∠BAD的平分线,试猜想线段AB、AD、DC之间的数量关系,并证明你的猜想;
(3)【拓展延伸】如图3,已知AB∥CF,点E是BC的中点,点D在线段AE上,若AB=10,CF=4,DF=6,求证∠EDF=∠BAE.
11.如图1,四边形ABCD是平行四边形,点E在边AD上,连接BE,过点D作DFBE,交BC于点F,点G,H分别是BE,DF的中点,连接EH,GF.
(1)求证:四边形EGFH为平行四边形;
(2)若BC=10,AB=6,∠ABC=60°;
①当BG=GF时,求四边形EGFH的面积:
②如图2,延长FG交AB于点P,连接AG,记ΔAPG的面积为S1,ΔBPG的面积为S2,若FP⊥AB,求的值.
12.已知,点P是直角三角形ABC斜边AB上一动点(不与A,B重合),分别过A,B向直线CP作垂线,垂足分别为E,F,Q为斜边AB的中点.
(1)如图1,当点P与点Q重合时,AE与BF的位置关系是___,QE与QF的数量关系是___;
(2)如图2,当点P在线段AB上不与点Q重合时,试判断QE与QF的数量关系,并给予证明;
13.已知点P是Rt△ABC斜边AB上一动点(不与点A,B重合),分别过点A,B向直线CP作垂线,垂足分别为点E,F,点Q为斜边AB的中点.
(1)如图①,当点P与点Q重合时,AE与BF的位置关系是________,QE与QF的数量关系是________;
(2)如图②,当点P在线段AB上且不与点Q重合时,试判断QE与QF的数量关系,并说明理由.
(温馨提示:直角三角形斜边上的中线等于斜边的一半)
【雨伞模型模型过关练】
1.如图,ABC中,AC=BC,∠ACB=90°,AD平分∠BAC交BC于点D,过点B作BE⊥AD,交AD延长线于点E,F为AB的中点,连接CF,交AD于点G,连接BG.
(1)线段BE与线段AD有何数量关系?并说明理由;
(2)判断BEG的形状,并说明理由.
2.如图,△ABC中,AB=AC,∠BAC=90°,CD平分∠ACB,BE⊥CD,垂足E在CD的延长线上.求证:BE=CD.
3.已知:如图,在中,,平分,于,是的中点,求证:.
4.已知:中,为的中点,平分于,连结,若,求的长.
5.如图,中,M为的中点,为的平分线,于D.
(1)求证:;
(2)若,求的长.
6.如图,M是△ABC的边BC的中点,AN平分∠BAC,BN⊥AN于点N,延长BN交AC于点D,已知AB=10,BC=15,MN=3
(1)求证:BN=DN;
(2)求△ABC的周长.
7.如图1,在中,点是边的中点,点在内,平分,,点在边上,.
(1)求证:四边形是平行四边形.
(2)判断线段、、的数量之间具有怎样的关系?证明你所得到的结论.
(3)点是的边上的一点,若的面积,请直接写出的面积(不需要写出解答过程).
8.如图,在中,平分于点,点是的中点
(1)如图1,的延长线与边相交于点,求证:
(2)如图2,探究线段之间的数量关系并证明你的结论.
9.如图1,点是直线上一点,点是直线上一点,且MN//PQ.和的平分线交于点.
(1)求证:;
(2)过点作直线交于点(不与点重合),交于点E,
①若点在点的右侧,如图2,求证:;
②若点在点的左侧,则线段、、有何数量关系?直接写出结论,不说理由.
专题20 蚂蚁爬行模型-2023年中考数学一轮复习热点题型与方法精准突破(原卷版): 这是一份专题20 蚂蚁爬行模型-2023年中考数学一轮复习热点题型与方法精准突破(原卷版),共11页。
专题19 378与578模型-2023年中考数学一轮复习热点题型与方法精准突破(原卷版): 这是一份专题19 378与578模型-2023年中考数学一轮复习热点题型与方法精准突破(原卷版),共3页。
专题13 胖瘦模型-2023年中考数学一轮复习热点题型与方法精准突破(原卷版): 这是一份专题13 胖瘦模型-2023年中考数学一轮复习热点题型与方法精准突破(原卷版),共4页。