2022-2023学年广西百色市第四中学八年级第二学期期中考试数学试卷
展开
这是一份2022-2023学年广西百色市第四中学八年级第二学期期中考试数学试卷,共14页。试卷主要包含了有下列四种说法等内容,欢迎下载使用。
2022-2023学年广西省百色市第四中学八年级第二学期期中考试数学试卷一.选择题(共12小题,满分36分,每小题3分)1.(3分)下列图形中,为中心对称图形的是( )A. B. C. D.2.(3分)下列二次根式中,最简二次根式是( )A. B. C. D.3.(3分)下列式子正确的是( )A. B. C.=﹣1 D.4.(3分)有一直角三角形的两边长分别为3和4,则第三边长是( )A.5 B.5或 C. D.5.(3分)如图,在△ABC中,∠ACB=90°,CD是AB边上的高,∠A=30°,则下列结论中正确的是( )A.AC=2AD B.CD=2BD C.BC=2CD D.BC=2BD6.(3分)小明、小强、小刚家在如图所示的点A、B、C三个地方,它们的连线恰好构成一个直角三角形,B,C之间的距离为5km,新华书店恰好位于斜边BC的中点D,则新华书店D与小明家A的距离是( )A.2.5km B.3km C.4km D.5km7.(3分)下列说法中错误的是( )A.直角三角形斜边上的中线等于斜边的一半 B.菱形的对角线平分一组对角,并且菱形是轴对称图形 C.矩形的对角线把这个矩形分成4个等腰三角形 D.对角线互相垂直的菱形是正方形8.(3分)一平行四边形的一条边长为6,两条对角线的长分别为8和,这个平行四边形是( )A.正方形 B.矩形 C.菱形 D.非特殊平行四边形9.(3分)有下列四种说法:(1)过直线外一点有且只有一条直线与这条直线平行(2)平面内,过一点能且只能作一条直线与已知直线垂直(3)直线外一点与直线上各点连接的所有线段中,垂线段最短(4)平行于同一条直线的两条直线平行.其中正确的个数是( )A.1个 B.2个 C.3个 D.4个10.(3分)如图,在水塔O的东北方向24m处有一抽水站A,在水塔的东南方向18m处有一建筑工地B,在AB间建一条直水管,则水管AB的长为( )A.40m B.45m C.30m D.35m11.(3分)如图,四边形ABCD的对角线AC,BD相交于点O,且AC⊥BD,则下列条件能判定四边形ABCD是菱形的是( )A.AB=CD B.AB∥CD,AB=CD C.AC=BD D.∠ABC=∠DCB12.(3分)如图,点A,B,E在同一条直线上,正方形ABCD、正方形BEFG的边长分别为6、8,H为线段DF的中点,则BH的长为( )A.6 B.8 C.6或8 D.5二.填空题(共6小题,满分18分,每小题3分)13.(3分)若实数a的相反数是﹣9,则a的算术平方根是 .14.(3分)一个多边形的内角和为1440°,则这个多边形是 边形.15.(3分)已知菱形的周长为40cm,两个相邻角度数比为1:2,则较短的对角线长为 ,面积为 .16.(3分)已知:如图,菱形ABCD中,∠B=60°,AB=4,则以AC为边长的正方形ACEF的周长为 .17.(3分)若(m﹣2)xn+=0是二元一次方程,则m+n的值 .18.(3分)如果的小数部分为a,的整数部分为b,则a+b﹣= .三.解答题(共7小题,满分56分,每小题8分)19.(8分)计算题:(1)x2=32;(2)(﹣2)3×﹣×()2+.20.(6分)如图,已知∠ACB=∠BDA=90°,BC与AD交于点E,AC=BD.求证:点E在线段CD的垂直平分线上.21.(7分)已知:如图,∠BAP+∠APD=180°,∠1=∠2.求证:AE∥PF.22.(7分)如图,三角形ABC中任意一点P(x0,y0)经平移后对应点为P1(x0﹣2,y0﹣3),将三角形ABC作同样的平移得到三角形A1B1C1.(1)画出三角形A1B1C1;(2)请直接写出A1、B1、C1的坐标;(3)求三角形A1B1C1的面积.23.(8分)某中学为了加强学生体育锻炼,准备购进一批篮球和足球.据调查,某体育器材专卖店销售40个足球和60个篮球一共9200元;销售100个足球和30个篮球一共11000元.(1)求足球和篮球的单价;(2)该校计划使用10420元资金用于购买足球和篮球120个,且篮球数量不少于足球数量的2倍.购买时恰逢该专卖店在做优惠活动,信息如表:球类购买数量低于50个购买数量不低于50个足球原价销售八折销售篮球原价销售九折销售问在使用资金不超额的情况下,可有几种购买方案?如何购买费用最少?24.(10分)如图1,将线段AB平移至DC,使点A与点D对应,点B与点C对应,连接AD,BC.(1)填空:AD与BC的位置关系为 ;(2)如图2,E为BC延长线上一点,连接DE,BD,且∠ECD=∠EDC,作DF平分∠BDE交BE于点F,①若当∠ADC=70°,∠BDE=110°时,求∠CDF的度数;②试探究∠CDF与∠DBC之间的数量关系,并说明理由.25.(10分)(1)如图1,正方形ABCD和正方形DEFG(其中AB>DE),连接CE,AG交于点H,请直接写出线段AG与CE的数量关系 ,位置关系 ;(2)如图2,矩形ABCD和矩形DEFG,AD=2DG,AB=2DE,AD=DE,将矩形DEFG绕点D逆时针旋转α(0°<α<360°),连接AG,CE交于点H,(1)中线段关系还成立吗?若成立,请写出理由;若不成立,请写出线段AG,CE的数量关系和位置关系,并说明理由;(3)矩形ABCD和矩形DEFG,AD=2DG=6,AB=2DE=8,将矩形DEFG绕点D逆时针旋转α(0°<α<360°),直线AG,CE交于点H,当点E与点H重合时,请直接写出线段AE的长.
2022-2023学年广西省百色市第四中学八年级第二学期期中考试数学试卷参考答案与试题解析一.选择题(共12小题,满分36分,每小题3分)1. 解:A.不是中心对称图形,故本选项不符合题意;B.是中心对称图形,故本选项符合题意;C.不是中心对称图形,故本选项不符合题意;D.不是中心对称图形,故本选项不符合题意.故选:B.2. 解:A、原式=2,被开方数含能开得尽方的因数,不是最简二次根式,故本选项错误;B、被开方数含分母,不是最简二次根式,故本选项错误;C、原式=3,被开方数含能开得尽方的因数,不是最简二次根式,故本选项错误;D、符合最简二次根式的定义,故本选项正确;故选:D.3. 解:根据二次根式的性质:A、,故A错误;B、,故B错误;C、属于立方根的运算,故C正确;D、=2,故D错误.故选:C.4. 解:当4为斜边时,第三边为=;当4不是斜边时,第三边长为=5,则第三边长是5或.故选:B.5. 解:在△ABC中,∠ACB=90°,∴△ACB是直角三角形,∵∠A=30°,∴AB=2BC,∵CD是AB边上的高,∴∠CDA=∠CDB=90°,∴∠ACD=60°,∴∠DCB=30°,∴BC=2BD,AC=2CD.故选:D.6. 解:∵△ABC为直角三角形,且D为斜边上的中点,∴AD=BC,又BC=5km,则AD=2.5km.故选:A.7. 解:A、直角三角形斜边上的中线等于斜边的一半,所以A选项为真命题,不符合题意;B、菱形的对角线平分每一组对角,并且菱形是轴对称图形,所以B选项为真命题,不符合题意;C、矩形的对角线把这个矩形分成4个等腰三角形,所以C选项为真命题,不符合题意;D、对角线互相垂直的菱形是正方形,所以D选项为假命题,符合题意.故选:D.8. 解:因为平行四边形的对角线互相平分,所以42+(2)2=16+20=36=62,所以平行四边形的对角线互相垂直,所以根据对角线互相垂直的平行四边形是菱形,可知这个平行四边形是菱形.故选:C.9. 解:(1)过直线外一点有且只有一条直线与这条直线平行,正确;(2)平面内,过一点能且只能作一条直线与已知直线垂直,正确;(3)直线外一点与直线上各点连接的所有线段中,垂线段最短,正确;(4)平行于同一条直线的两条直线平行,正确;正确的有4个,故选:D.10. 解:∵OA是东北方向,OB是东南方向,∴∠AOB=90°,又∵OA=24m,OB=18m,∴AB===30(m).故选:C.11. 解:A、当AB=CD,AC⊥BD时,四边形ABCD不是平行四边形;故选项A不符合题意;B、∵AB∥CD,AB=CD,∴四边形ABCD是平行四边形,∵AC⊥BD,∴四边形ABCD为菱形,故选项B符合题意;C、当AC=BD,AC⊥BD时,四边形ABCD不是平行四边形;故选项C不符合题意;D、当∠ABC=∠DCB时,四边形ABCD不是平行四边形;故选项D不符合题意.故选:B.12. 解:如图,连接BD、BF,∵四边形ABCD和四边形BEFG都是正方形,∴AB=AD=6,BE=EF=8,∠A=∠E=90°,∠ABD=∠CBD=∠EBF=∠FBG=45°,∴∠DBF=90°,∴BD==6,BF==8,在Rt△BDF中,∴DF===10,∵H为线段DF的中点,∴BH=DF=5,故选:D.二.填空题(共6小题,满分18分,每小题3分)13. 解:∵实数a的相反数是﹣9,∴a=9.∵9的算术平方根为3,∴a的算术平方根是3.故答案为:3.14. 解:设这个多边形的边数为n,则(n﹣2)×180°=1440°,解得:n=10,即这个多边形是十边形,故答案为:十.15. 解:根据已知可得,菱形的边长AB=BC=CD=AD=10cm,∠ABC=60°,∠BAD=120°,∴△ABC为等边三角形,∴AC=AB=10cm,AO=CO=5cm,在Rt△AOB中,根据勾股定理得:BO==5,∴BD=2BO=10(cm),则S菱形ABCD=×AC×BD=×10×10 =50(cm2);故答案为:10cm,50cm2.16. 解:∵B=60°,AB=BC∴△ABC是等边三角形∴AC=AB=4∴正方形ACEF的周长=4×4=16.16故答案为16.17. 解:∵(m﹣2)xn+=0是二元一次方程,∴m2﹣3=1且m﹣2≠0且n=1,解得:m=﹣2,n=1,∴m+n=﹣2+1=﹣1,故答案为:﹣1.18. 解:∵1<<2,3<<4,∴a=﹣1,b=3,∴a+b﹣=﹣1+3﹣=2.故答案为:2.三.解答题(共7小题,满分56分,每小题8分)19. 解:(1)∵x2=32,∴x2=64,解得x=﹣8或x=8. (2)(﹣2)3×﹣×()2+=﹣8×4﹣(﹣4)×+3=﹣32+1+3=﹣28.20. 证明:∵∠ACB=∠BDA=90°,AC=BD,且AB=BA,∴Rt△ACB≌Rt△BDA(HL),∴AD=BC,∠ABC=∠BAD,∴AE=BE,∴EC=ED,∴点E在线段CD的垂直平分线上.21. 证明:∵∠BAP+∠APD=180°,∴AB∥CD,∴∠BAP=∠APC.∵∠1=∠2,∴∠EAP=∠APF,∴AE∥FP.22. 解:(1)如图,△A1B1C1即为所求;(2)A1(0,0)、B1(﹣4,﹣3)、C1(﹣2,﹣4);(3)△A1B1C1的面积=6×4﹣×1×6﹣×2×4﹣×3×4=11.23. 解:(1)设足球每个x元,篮球每个y元,由题意得:,解得,答:足球每个80元,篮球每个100元. (2)设购买足球x个,则购买篮球(120﹣x)个,根据题意得:120﹣x≥2x,解得x≤40,由题意得:80x+100×0.9(120﹣x)≤10420,解得x≥38,∴38≤x≤40,∵x为正整数,∴有3种购买方案:①购买足球38个,篮球82个;②购买足球39个,篮球81个;③购买足球40个,篮球80个.∵购买篮球的单价大于购买足球的单价,所以方案③购买费用最少.24. 解:(1)∵将线段AB平移至DC,∴AD∥BC;故答案为:AD∥BC;(2)①∵AD∥BC,∴∠ADB=∠DBC,∠ADC=∠ECD=70°,∴∠ECD=∠EDC=70°,∴∠ADC=∠EDG,∵DF平分∠BDE,∴∠EDF=∠BDF=∠BDE=55°,∴∠CDF=∠CDE﹣∠FDE=15°;②∠CDF=∠DBC,理由:设∠FDE=x,∠CDF=y,则∠DCE=∠CDE=x+y,∵DF平分∠BDE,∴∠BDF=∠EDF=x,∴∠BDC=∠BDF﹣∠CDF=x﹣y,∴∠DBC=∠DCF﹣∠BDC=(x+y)﹣(x﹣y)=2y=2∠CDF,故∠CDF=∠DBC.25. 解:(1)如图1,在正方形ABCD和正方形DEFG中,∠ADC=∠EDG=90°,∴∠ADE+∠EDG=∠ADC+∠ADE,即∠ADG=∠CDE,∵DG=DE,DA=DC,∴△GDA≌△EDC(SAS),∴AG=CE,∠GAD=∠ECD,∵∠COD=∠AOH,∴∠AHO=∠CDO=90°,∴AG⊥CE,故答案为:相等,垂直; (2)不成立,CE=2AG,AG⊥CE,理由如下:如图2,由(1)知,∠EDC=∠ADG,∵AD=2DG,AB=2DE,AD=DE,∴,==,∴=,∴△GDA∽△EDC,∴=,即CE=2AG,∵△GDA∽△EDC,∴∠ECD=∠GAD,∵∠COD=∠AOH,∴∠AHO=∠CDO=90°,∴AG⊥CE; (3)①当点E在线段AG上时,如图3,在Rt△EGD中,DG=3,ED=4,则EG=5,过点D作DP⊥AG于点P,∵∠DPG=∠EDG=90°,∠DGP=∠EGD,∴△DGP∽△EGD,∴=,即,∴PD=,PG=,则AP===,则AE=AG﹣GE=AP+GP﹣GE=+﹣5=;②当点G在线段AE上时,如图4,过点D作DP⊥AG于点P,∵∠DPG=∠EDG=90°,∠DGP=∠EGD,同理得:PD=,AP=,由勾股定理得:PE==,则AE=AP+PE=+=;综上,AE的长为.
相关试卷
这是一份2022-2023学年广西百色市八年级(下)期末数学试卷(含解析),共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2022-2023学年广西百色市八年级(下)期末数学试卷(含解析),共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份广西壮族自治区百色市第四中学2022-2023学年八年级下学期期中数学试题,共6页。