2023年辽宁省抚顺市清原县中考数学一模试卷
展开2023年辽宁省抚顺市清原县中考数学一模试卷
一、选择题(下列各题的备选答案中,只有一个答案是正确的,每小题3分,共30分)
1.(3分)如图,是由6个相同的正方体组成的立体图形,它的俯视图是( )
A. B.
C. D.
2.(3分)(北师大版)如图①,有6张写有汉字的卡片,它们的背面都相同,现将它们背面朝上洗匀后如图②摆放,从中任意翻开一张是汉字“自”的概率是( )
A. B. C. D.
3.(3分)如图,某博物馆大厅电梯的截面图中,AB的长为12米,AB与AC的夹角为α,则高BC是( )
A.12sinα米 B.12cosα米 C.米 D.米
4.(3分)如图1是一块弘扬“社会主义核心价值观”的扇面宣传展板,该展板的部分示意图如图2所示,它是以O为圆心,OA,OB长分别为半径,圆心角∠O=120°形成的扇面,若OA=3m,OB=1.5m,则阴影部分的面积为( )
A.4.25πm2 B.3.25πm2 C.3πm2 D.2.25πm2
5.(3分)如图,在矩形ABCD中,AB=6,AD=4,点E、F分别为BC、CD的中点,BF、DE相交于点G,过点E作EH∥CD,交BF于点H,则线段GH的长度是( )
A. B.1 C. D.
6.(3分)某学校组织艺术摄影展,上交的作品要求如下:七寸照片(长7英寸,宽5英寸);将照片贴在一张矩形衬纸的正中央,照片四周外露衬纸的宽度相同;矩形衬纸的面积为照片面积的3倍.设照片四周外露衬纸的宽度为x英寸(如图),下面所列方程正确的是( )
A.(7+x)(5+x)×3=7×5 B.(7+x)(5+x)=3×7×5
C.(7+2x)(5+2x)×3=7×5 D.(7+2x)(5+2x)=3×7×5
7.(3分)如图,在平面直角坐标系中,点P在反比例函数y=(k>0,x>0)的图象上,其纵坐标为2,过点P作PQ∥y轴,交x轴于点Q,将线段QP绕点Q顺时针旋转60°得到线段QM.若点M也在该反比例函数的图象上,则k的值为( )
A. B. C. D.4
8.(3分)已知二次函数y=a(x﹣1)2﹣a(a≠0),当﹣1≤x≤4时,y的最小值为﹣4,则a的值为( )
A.或4 B.或﹣ C.﹣或4 D.﹣或4
9.(3分)如图,在△ABC中,∠ABC=90°,∠C=30°,以点A为圆心,以AB的长为半径作弧交AC于点D,连接BD,再分别以点B,D为圆心,大于BD的长为半径作弧,两弧交于点P,作射线AP交BC于点E,连接DE,则下列结论中不正确的是( )
A.BE=DE B.DE垂直平分线段AC
C. D.BD2=BC•BE
10.(3分)如图,在等边三角形ABC中,BC=4,在Rt△DEF中,∠EDF=90°,∠F=30°,DE=4,点B,C,D,E在一条直线上,点C,D重合,△ABC沿射线DE方向运动,当点B与点E重合时停止运动.设△ABC运动的路程为x,△ABC与Rt△DEF重叠部分的面积为S,则能反映S与x之间函数关系的图象是( )
A.
B.
C.
D.
二、填空题(每小题3分,共24分)
11.(3分)方程(x+1)2=9的根是 .
12.(3分)如图,一个质地均匀的正五边形转盘,指针的位置固定,当转盘自由转动停止后,观察指针指向区域内的数(若指针正好指向分界线,则重新转一次),这个数是一个奇数的概率是 .
13.(3分)一个不透明的口袋中装有5个红球和m个黄球,这些球除颜色外都相同,某同学进行了如下试验:从袋中随机摸出1个球记下它的颜色后,放回摇匀,为一次摸球试验.根据记录在下表中的摸球试验数据,可以估计出m的值为 .
摸球的总次数a
100
500
1000
2000
…
摸出红球的次数b
19
101
199
400
…
摸出红球的频率
0.190
0.202
0.199
0.200
…
14.(3分)如图,已知Rt△ABC中,斜边BC上的高AD=4,,则CD= .
15.(3分)如图,A,B是双曲线y=(x>0)上的两点,连接OA,OB.过点A作AC⊥x轴于点C,交OB于点D.若D为AC的中点,△AOD的面积为3,点B的坐标为(m,2),则m的值为 .
16.(3分)如图所示,小区内有个圆形花坛O,点C在弦AB上,AC=11,BC=21,OC=13,则这个花坛的面积为 .(结果保留π)
17.(3分)一副三角板按图1放置,O是边BC(DF)的中点,BC=20cm.如图2,将△ABC绕点O顺时针旋转60°,AC与EF相交于点G,则FG的长是 .
18.(3分)如图,正方形ABCD的对角线AC,BD相交于点O,点F是CD上一点,OE⊥OF交BC于点E,连接AE,BF交于点P,连接OP,则下列结论:
①AE⊥BF;
②∠OPA=45°;
③;
④若BE:CE=2:3,则 ;
⑤四边形OECF的面积是正方形ABCD面积的.
其中正确的结论是 .
三、(19题10分,20题12分,共22分)
19.(10分)如图,在平面直角坐标系中,△ABC各顶点的坐标分别是A(4,8),B(4,4),C(10,4),△A1B1C1与△ABC关于原点O位似,A,B,C的对应点分别为A1,B1,C1,其中B1的坐标是(2,2).
(1)△A1B1C1和△ABC的相似比是 ;
(2)请画出△A1B1C1;
(3)BC边上有一点M(a,b),在B1C1边上与点M对应点的坐标是 ;
(4)△A1B1C1的面积是 .
20.(12分)据网站调查,2022年网民们关注的热点话题分别有:消费、教育、环保、反腐及其他共五类,根据调查的部分相关数据,绘制的统计图表如图:
(1)求出共调查了多少人,并补全条形统计图;
(2)若某市约有880万人口,请你估计最关注环保问题的人数约为多少万人?
(3)在这次调查中,某单位共有甲、乙、丙、丁四人最关注教育问题,现准备从这四大中随机抽取两人进行座谈,试用列表法或树形图的方法抽取的两人恰好是甲和乙的概率.
四、(每小题12分,共24分)
21.(12分)如图,直线AB与反比例函数y=(k>0,x>0)的图象相交于点A和点C(3,2),与x轴的正半轴相交于点B.
(1)求k的值;
(2)连接OA,OC,若点C为线段AB的中点,求△AOC的面积.
22.(12分)如图1所示是一种太阳能路灯,它由灯杆和灯管支架两部分构成.如图2,AB是灯杆,CD是灯管支架,灯管支架CD与灯杆间的夹角∠BDC=60°.综合实践小组的同学想知道灯管支架CD的长度,他们在地面的点E处测得灯管支架底部D的仰角为60°,在点F处测得灯管支架顶部C的仰角为30°,测得AE=3m,EF=8m(A,E,F在同一条直线上).根据以上数据,解答下列问题:
(1)求灯管支架底部距地面高度AD的长(结果保留根号);
(2)求灯管支架CD的长度(结果精确到0.1m,参考数据:≈1.73).
五、(本题12分)
23.(12分)如图,已知AB是⊙O的直径,点E是⊙O上异于A,B的点,点F是的中点,连接AE,AF,BF,过点F作FC⊥AE交AE的延长线于点C,交AB的延长线于点D,∠ADC的平分线DG交AF于点G,交FB于点H.
(1)求证:CD是⊙O的切线;
(2)求sin∠FHG的值.
六、(本题12分)
24.(12分)为实施“乡村振兴”计划,某村产业合作社种植了“千亩桃园”.2022年该村桃子丰收,销售前对本地市场进行调查发现:当批发价为4千元/吨时,每天可售出12吨,每吨涨1千元,每天销量将减少2吨,据测算,每吨平均投入成本2千元,为了抢占市场,薄利多销,该村产业合作社决定,批发价每吨不低于4千元,不高于5.5千元.请解答以下问题:
(1)求每天销量y(吨)与批发价x(千元/吨)之间的函数关系式,并直接写出自变量x的取值范围;
(2)当批发价定为多少时,每天所获利润最大?最大利润是多少?
七、(本题12分)
25.(12分)已知矩形ABCD,点E为直线BD上的一个动点(点E不与点B重合),连接AE,以AE为一边构造矩形AEFG(A,E,F,G按逆时针方向排列),连接DG.
(1)如图1,当==1时,请直接写出线段BE与线段DG的数量关系与位置关系;
(2)如图2,当==2时,请猜想线段BE与线段DG的数量关系与位置关系,并说明理由;
(3)如图3,在(2)的条件下,连接BG,EG,分别取线段BG,EG的中点M,N,连接MN,MD,ND,若AB=,∠AEB=45°,请直接写出△MND的面积.
八、(本题14分)
26.(14分)如图,已知抛物线:y=﹣2x2+bx+c与x轴交于点A,B(2,0)(A在B的左侧),与y轴交于点C,对称轴是直线x=,P是第一象限内抛物线上的任一点.
(1)求抛物线的解析式;
(2)若点D为线段OC的中点,则△POD能否是等边三角形?请说明理由;
(3)过点P作x轴的垂线与线段BC交于点M,垂足为点H,若以P,M,C为顶点的三角形与△BMH相似,求点P的坐标.
2023年辽宁省抚顺市清原县中考数学一模试卷
(参考答案)
一、选择题(下列各题的备选答案中,只有一个答案是正确的,每小题3分,共30分)
1.(3分)如图,是由6个相同的正方体组成的立体图形,它的俯视图是( )
A. B.
C. D.
【解答】解:从上边看,底层左边是两个小正方形,上层是三个小正方形.
故选:C.
2.(3分)(北师大版)如图①,有6张写有汉字的卡片,它们的背面都相同,现将它们背面朝上洗匀后如图②摆放,从中任意翻开一张是汉字“自”的概率是( )
A. B. C. D.
【解答】解:由于所有机会均等的结果为6种,而出现“自”的机会有3种,
所以出现“自”的概率为.
故选:A.
3.(3分)如图,某博物馆大厅电梯的截面图中,AB的长为12米,AB与AC的夹角为α,则高BC是( )
A.12sinα米 B.12cosα米 C.米 D.米
【解答】解:Rt△ABC中,sinα=,
∵AB=12米,
∴BC=12sinα(米).
故选:A.
4.(3分)如图1是一块弘扬“社会主义核心价值观”的扇面宣传展板,该展板的部分示意图如图2所示,它是以O为圆心,OA,OB长分别为半径,圆心角∠O=120°形成的扇面,若OA=3m,OB=1.5m,则阴影部分的面积为( )
A.4.25πm2 B.3.25πm2 C.3πm2 D.2.25πm2
【解答】解:S阴=S扇形DOA﹣S扇形BOC
=﹣
=2.25πm2.
故选:D.
5.(3分)如图,在矩形ABCD中,AB=6,AD=4,点E、F分别为BC、CD的中点,BF、DE相交于点G,过点E作EH∥CD,交BF于点H,则线段GH的长度是( )
A. B.1 C. D.
【解答】解:∵四边形ABCD是矩形,AB=6,AD=4,
∴DC=AB=6,BC=AD=4,∠C=90°,
∵点E、F分别为BC、CD的中点,
∴DF=CF=DC=3,CE=BE=BC=2,
∵EH∥CD,
∴FH=BH,
∵BE=CE,
∴EH=CF=,
由勾股定理得:BF===5,
∴BH=FH=BF=,
∵EH∥CD,
∴△EHG∽△DFG,
∴,
∴=,
解得:GH=,
故选:A.
6.(3分)某学校组织艺术摄影展,上交的作品要求如下:七寸照片(长7英寸,宽5英寸);将照片贴在一张矩形衬纸的正中央,照片四周外露衬纸的宽度相同;矩形衬纸的面积为照片面积的3倍.设照片四周外露衬纸的宽度为x英寸(如图),下面所列方程正确的是( )
A.(7+x)(5+x)×3=7×5 B.(7+x)(5+x)=3×7×5
C.(7+2x)(5+2x)×3=7×5 D.(7+2x)(5+2x)=3×7×5
【解答】解:设照片四周外露衬纸的宽度为x英寸,根据题意得:(7+2x)(5+2x)=3×7×5,
故选:D.
7.(3分)如图,在平面直角坐标系中,点P在反比例函数y=(k>0,x>0)的图象上,其纵坐标为2,过点P作PQ∥y轴,交x轴于点Q,将线段QP绕点Q顺时针旋转60°得到线段QM.若点M也在该反比例函数的图象上,则k的值为( )
A. B. C. D.4
【解答】解:作MN⊥x轴于N,
∵P在反比例函数y=(k>0,x>0)的图象上,其纵坐标为2,过点P作PQ∥y轴,交x轴于点Q,
∴P(,2),
∴PQ=2,
∵将线段QP绕点Q顺时针旋转60°得到线段QM.
∴QM=QP=2,∠PQM=60°,
∴∠MQN=90°﹣60°=30°,
∴MN=QM=1,
∴QN==,
∴M(+,1),
∵点M也在该反比例函数的图象上,
∴k=+,
解得k=2,
故选:C.
8.(3分)已知二次函数y=a(x﹣1)2﹣a(a≠0),当﹣1≤x≤4时,y的最小值为﹣4,则a的值为( )
A.或4 B.或﹣ C.﹣或4 D.﹣或4
【解答】解:y=a(x﹣1)2﹣a的对称轴为直线x=1,
顶点坐标为(1,﹣a),
当a>0时,在﹣1≤x≤4,函数有最小值﹣a,
∵y的最小值为﹣4,
∴﹣a=﹣4,
∴a=4;
当a<0时,在﹣1≤x≤4,当x=4时,函数有最小值,
∴9a﹣a=﹣4,
解得a=﹣;
综上所述:a的值为4或﹣,
故选:D.
9.(3分)如图,在△ABC中,∠ABC=90°,∠C=30°,以点A为圆心,以AB的长为半径作弧交AC于点D,连接BD,再分别以点B,D为圆心,大于BD的长为半径作弧,两弧交于点P,作射线AP交BC于点E,连接DE,则下列结论中不正确的是( )
A.BE=DE B.DE垂直平分线段AC
C. D.BD2=BC•BE
【解答】解:由题意可得∠ABC=90°,∠C=30°,AB=AD,AP为BD的垂直平分线,
∴BE=DE,
∴∠BAE=∠DAE=30°,
∴△AEC是等腰三角形,
∵AB=AD,AC=2AB,
∴点D为AC的中点,
∴DE垂直平分线段AC,
故选项A,B正确,不符合题意;
在△ABC和△EDC中,∠C=∠C,∠ABC=∠EDC=90°,
∴△ABC∽△EDC,
∴,
∵,DC=,
∴,
∴,
∴,故选项C错误,符合题意;
在△ABD中,∵AB=AD,∠BAD=60°,
∴△ABD是等边三角形,
∴∠ABD=∠ADB=60°,
∴∠DBE=∠BDE=30°,
在△BED和△BDC中,∠DBC=∠EBD=30°,∠BDE=∠C=30°,
∴△BED∽△BDC,
∴,
∴BD2=BC•BE,故选项D正确,不符合题意.
故选:C.
10.(3分)如图,在等边三角形ABC中,BC=4,在Rt△DEF中,∠EDF=90°,∠F=30°,DE=4,点B,C,D,E在一条直线上,点C,D重合,△ABC沿射线DE方向运动,当点B与点E重合时停止运动.设△ABC运动的路程为x,△ABC与Rt△DEF重叠部分的面积为S,则能反映S与x之间函数关系的图象是( )
A.
B.
C.
D.
【解答】解:过点A作AM⊥BC,交BC于点M,
在等边△ABC中,∠ACB=60°,
在Rt△DEF中,∠F=30°,
∴∠FED=60°,
∴∠ACB=∠FED,
∴AC∥EF,
在等边△ABC中,AM⊥BC,
∴BM=CM=BC=2,AM=BM=2,
∴S△ABC=BC•AM=4,
①当0<x≤2时,设AC与DF交于点G,此时△ABC与Rt△DEF重叠部分为△CDG,
由题意可得CD=x,DG=x
∴S=CD•DG=x2;
②当2<x≤4时,设AB与DF交于点G,此时△ABC与Rt△DEF重叠部分为四边形AGDC,
由题意可得:CD=x,则BD=4﹣x,DG=(4﹣x),
∴S=S△ABC﹣S△BDG=4﹣×(4﹣x)×(4﹣x),
∴S=﹣x2+4x﹣4=﹣(x﹣4)2+4,
③当4<x≤8时,设AB与EF交于点G,过点G作GM⊥BC,交BC于点M,
此时△ABC与Rt△DEF重叠部分为△BEG,
由题意可得CD=x,则CE=x﹣4,DB=x﹣4,
∴BE=x﹣(x﹣4)﹣(x﹣4)=8﹣x,
∴BM=4﹣x
在Rt△BGM中,GM=(4﹣x),
∴S=BE•GM=(8﹣x)×(4﹣x),
∴S=(x﹣8)2,
综上,选项A的图象符合题意,
故选:A.
二、填空题(每小题3分,共24分)
11.(3分)方程(x+1)2=9的根是 x1=2,x2=﹣4 .
【解答】解:(x+1)2=9,
x+1=±3,
x1=2,x2=﹣4.
故答案为:x1=2,x2=﹣4.
12.(3分)如图,一个质地均匀的正五边形转盘,指针的位置固定,当转盘自由转动停止后,观察指针指向区域内的数(若指针正好指向分界线,则重新转一次),这个数是一个奇数的概率是 .
【解答】解:由图可知,
指针指向的区域有5种可能性,其中指向的区域内的数是奇数的可能性有3种,
∴这个数是一个奇数的概率是,
故答案为:.
13.(3分)一个不透明的口袋中装有5个红球和m个黄球,这些球除颜色外都相同,某同学进行了如下试验:从袋中随机摸出1个球记下它的颜色后,放回摇匀,为一次摸球试验.根据记录在下表中的摸球试验数据,可以估计出m的值为 20 .
摸球的总次数a
100
500
1000
2000
…
摸出红球的次数b
19
101
199
400
…
摸出红球的频率
0.190
0.202
0.199
0.200
…
【解答】解:∵通过大量重复试验后发现,摸到红球的频率稳定于0.2,
∴=0.2,
解得:m=20.
经检验m=20是原方程的解,
故答案为:20.
14.(3分)如图,已知Rt△ABC中,斜边BC上的高AD=4,,则CD= 3 .
【解答】解:∵△ABC为直角三角形,AD⊥BC,
∴∠B+∠BAD=90°,∠BAD+∠CAD=90°,
∴∠B=∠CAD,则,
∴,
∵AD=4,
∴AC=5,
根据勾股定理可得:,
故答案为:3.
15.(3分)如图,A,B是双曲线y=(x>0)上的两点,连接OA,OB.过点A作AC⊥x轴于点C,交OB于点D.若D为AC的中点,△AOD的面积为3,点B的坐标为(m,2),则m的值为 6 .
【解答】解:因为D为AC的中点,△AOD的面积为3,
所以△AOC的面积为6,
所以k=12=2m.
解得:m=6.
故答案为:6.
16.(3分)如图所示,小区内有个圆形花坛O,点C在弦AB上,AC=11,BC=21,OC=13,则这个花坛的面积为 400π .(结果保留π)
【解答】解:如图,连接OB,过点O作OD⊥AB于D,
∵OD⊥AB,OD过圆心,AB是弦,
∴AD=BD=AB=(AC+BC)=×(11+21)=16,
∴CD=BC﹣BD=21﹣16=5,
在Rt△COD中,OD2=OC2﹣CD2=132﹣52=144,
在Rt△BOD中,OB2=OD2+BD2=144+256=400,
∴S⊙O=π×OB2=400π,
故答案为:400π.
17.(3分)一副三角板按图1放置,O是边BC(DF)的中点,BC=20cm.如图2,将△ABC绕点O顺时针旋转60°,AC与EF相交于点G,则FG的长是 (5﹣5)cm .
【解答】解:如图所示,BC交EF于点N,
由题意得,∠EGF=∠BAC=90°,∠DEF=60°,∠DFE=30°,∠ABC=∠ACB=45°,BC=DF=20cm,
根据点O是边BC(DF)的中点,可得:BO=OC=DO=FO=10cm
∵△ABC绕点O顺时针旋转60°,∠DFE=30°,
∴∠BOD=NOF=60°,
∴∠NOF+∠F=90°,
∴∠FNO=180°﹣∠NOF﹣∠F=90°,
∴△ONF是直角三角形,
∴ON=OF=5cm,
∴FN==5,NC=OC﹣ON=5cm,
∵∠FNO=90°,∠ACB=45°,
∴∠GNC=180°﹣∠FNO=90°,
∴△CNG是直角三角形,
∴∠NGC=180°﹣∠GNC﹣∠ACB=45°,
∴△CNG是等腰直角三角形,
∴NG=NC=5cm,
∴FG=FN﹣NG=(5﹣5)cm,
故答案为:(5﹣5)cm.
18.(3分)如图,正方形ABCD的对角线AC,BD相交于点O,点F是CD上一点,OE⊥OF交BC于点E,连接AE,BF交于点P,连接OP,则下列结论:
①AE⊥BF;
②∠OPA=45°;
③;
④若BE:CE=2:3,则 ;
⑤四边形OECF的面积是正方形ABCD面积的.
其中正确的结论是 ①②③⑤ .
【解答】解:①∵四边形ABCD 是正方形,
∴AB=BC=CD,AC⊥BD,∠ABD=∠DBC=∠ACD=45°.
∴∠BOE+∠EOC=90°,
∵OE⊥OF,
∴∠FOC+∠EOC=90°.
∴∠BOE=∠COF.
在△BOE和△COF中,
,
∴△BOE≌△COF(ASA),
∴BE=CF.
在△BAE和△CBF中,
,
∴△BAE≌△CBF(SAS),
∴∠BAE=∠CBF.
∵∠ABP+∠CBF=90°,
∴∠ABP+∠BAE=90°,
∴∠APB=90°.
∴AE⊥BF.
∴①的结论正确;
②∵∠APB=90°,∠AOB=90°,
∴点A,B,P,O四点共圆,
∴∠APO=∠ABO=45°,
∴②的结论正确;
③过点O作OH⊥OP,交AP于点H,如图,
∵∠APO=45°,OH⊥OP,
∴OH=OP=HP,
∴HP=OP.
∵OH⊥OP,
∴∠POB+∠HOB=90°,
∵OA⊥OB,
∴∠AOH+∠HOB=90°.
∴∠AOH=∠BOP.
∵∠OAH+BAE=45°,∠OBP+∠CBF=45°,∠BAE=∠CBF,
∴∠OAH=∠OBP.
在△AOH和△BOP中,
,
∴△AOH≌△BOP(ASA),
∴AH=BP.
∴AP﹣BP=AP﹣AH=HP=OP.
∴③的结论正确;
④∵BE:CE=2:3,
∴设BE=2x,则CE=3x,
∴AB=BC=5x,
∴AE==x.
过点E作EG⊥AC于点G,如图,
∵∠ACB=45°,
∴EG=GC=EC=x,
∴AG==x,
在Rt△AEG中,
∵tan∠CAE=,
∴tan∠CAE==.
∴④的结论不正确;
⑤∵四边形ABCD 是正方形,
∴OA=OB=OC=OD,∠AOB=∠BOC=∠COD=∠DOA=90°,
∴△OAB≌△OBC≌△OCD≌△DOA(SAS).
∴S△OBC=S正方形ABCD.
∴S△BOE+S△OEC=S正方形ABCD.
由①知:△BOE≌△COF,
∴S△OBE=S△OFC,
∴S△OEC+S△OFC=S正方形ABCD.
即四边形OECF的面积是正方形ABCD面积的.
∴⑤的结论正确.
综上,①②③⑤的结论正确.
故答案为:①②③⑤.
三、(19题10分,20题12分,共22分)
19.(10分)如图,在平面直角坐标系中,△ABC各顶点的坐标分别是A(4,8),B(4,4),C(10,4),△A1B1C1与△ABC关于原点O位似,A,B,C的对应点分别为A1,B1,C1,其中B1的坐标是(2,2).
(1)△A1B1C1和△ABC的相似比是 ;
(2)请画出△A1B1C1;
(3)BC边上有一点M(a,b),在B1C1边上与点M对应点的坐标是 (a,b) ;
(4)△A1B1C1的面积是 3 .
【解答】解:(1)△A1B1C1和△ABC的相似比是;
故答案为:;
(2)如图所示:△A1B1C1即为所求;
(3)BC边上有一点M(a,b),在B1C1边上与点M对应点的坐标是(a,b);
故答案为:(a,b);
(4)△A1B1C1的面积是:×2×3=3.
故答案为:3.
20.(12分)据网站调查,2022年网民们关注的热点话题分别有:消费、教育、环保、反腐及其他共五类,根据调查的部分相关数据,绘制的统计图表如图:
(1)求出共调查了多少人,并补全条形统计图;
(2)若某市约有880万人口,请你估计最关注环保问题的人数约为多少万人?
(3)在这次调查中,某单位共有甲、乙、丙、丁四人最关注教育问题,现准备从这四大中随机抽取两人进行座谈,试用列表法或树形图的方法抽取的两人恰好是甲和乙的概率.
【解答】解:(1)调查的总人数是:420÷30%=1400(人),
关注教育的人数是:1400×25%=350(人).
答:共调查了1400人.
(2)880×10%=88(万人),
答:最关注环保问题的人数约为88万人.
(3)画树形图得:
∴一共有12种等可能的情况,其中抽取两人恰好是甲和乙的情况数有2种,
∴P(抽取的两人恰好是甲和乙)=.
四、(每小题12分,共24分)
21.(12分)如图,直线AB与反比例函数y=(k>0,x>0)的图象相交于点A和点C(3,2),与x轴的正半轴相交于点B.
(1)求k的值;
(2)连接OA,OC,若点C为线段AB的中点,求△AOC的面积.
【解答】解:(1)∵点C(3,2)在反比例函数y=的图象上,
∴=2,
解得:k=6;
(2)∵点C(3,2)是线段AB的中点,
∴点A的纵坐标为4,
∴点A的横坐标为:=,
∴点A的坐标为(,4),
设直线AC的解析式为:y=ax+b,
则,
解得:,
∴直线AC的解析式为:y=﹣x+6,
当y=0时,x=,
∴OB=,
∵点C是线段AB的中点,
∴S△AOC=S△AOB=×××4=.
22.(12分)如图1所示是一种太阳能路灯,它由灯杆和灯管支架两部分构成.如图2,AB是灯杆,CD是灯管支架,灯管支架CD与灯杆间的夹角∠BDC=60°.综合实践小组的同学想知道灯管支架CD的长度,他们在地面的点E处测得灯管支架底部D的仰角为60°,在点F处测得灯管支架顶部C的仰角为30°,测得AE=3m,EF=8m(A,E,F在同一条直线上).根据以上数据,解答下列问题:
(1)求灯管支架底部距地面高度AD的长(结果保留根号);
(2)求灯管支架CD的长度(结果精确到0.1m,参考数据:≈1.73).
【解答】解:(1)在Rt△DAE中,∠AED=60°,AE=3m,
∴AD=AE•tan60°=3(米),
∴灯管支架底部距地面高度AD的长为3米;
(2)延长FC交AB于点G,
∵∠DAE=90°,∠AFC=30°,
∴∠DGC=90°﹣∠AFC=60°,
∵∠GDC=60°,
∴∠DCG=180°﹣∠GDC﹣∠DGC=60°,
∴△DGC是等边三角形,
∴DC=DG,
∵AE=3米,EF=8米,
∴AF=AE+EF=11(米),
在Rt△AFG中,AG=AF•tan30°=11×=(米),
∴DC=DG=AG﹣AD=﹣3=≈1.2(米),
∴灯管支架CD的长度约为1.2米.
五、(本题12分)
23.(12分)如图,已知AB是⊙O的直径,点E是⊙O上异于A,B的点,点F是的中点,连接AE,AF,BF,过点F作FC⊥AE交AE的延长线于点C,交AB的延长线于点D,∠ADC的平分线DG交AF于点G,交FB于点H.
(1)求证:CD是⊙O的切线;
(2)求sin∠FHG的值.
【解答】(1)证明:连接OF,
∵OA=OF,
∴∠OAF=∠OFA,,
∴∠CAF=∠OAF,
∴∠CAF=∠AFO,
∴OF∥AC,
∴∠C=∠OFD,
∵AC⊥CD,∠C=90°=∠OFD,
∴OF⊥CD,
∵OF是半径,
∴CD是⊙O的切线;
(2)解:∵AB是直径,∠AFB=90°,
∵OF⊥CD,∠AFO=90°﹣∠OFB=∠DFB,
∴∠AFO=∠DFB,
∵∠OAF=∠OFA,
∴∠DFB=∠OAF,
∵GD平分∠ADF,
∴∠ADG=∠FDG,
∵∠FGH=∠OAF+∠ADG,∠FHG=∠DFB+∠FDG,
∴∠FGH=∠FHG=45°,
∴sin∠FHG=.
六、(本题12分)
24.(12分)为实施“乡村振兴”计划,某村产业合作社种植了“千亩桃园”.2022年该村桃子丰收,销售前对本地市场进行调查发现:当批发价为4千元/吨时,每天可售出12吨,每吨涨1千元,每天销量将减少2吨,据测算,每吨平均投入成本2千元,为了抢占市场,薄利多销,该村产业合作社决定,批发价每吨不低于4千元,不高于5.5千元.请解答以下问题:
(1)求每天销量y(吨)与批发价x(千元/吨)之间的函数关系式,并直接写出自变量x的取值范围;
(2)当批发价定为多少时,每天所获利润最大?最大利润是多少?
【解答】解:(1)根据题意得y=12﹣2(x﹣4)=﹣2x+20(4≤x≤5.5),
所以每天销量y(吨)与批发价x(千元/吨)之间的函数关系式y=﹣2x+20,
自变量x的取值范围是4≤x≤5.5;
(2)设每天获得的利润为W千元,根据题意得w=(﹣2x+20)(x﹣2)=﹣2x2+24x﹣40=﹣2(x﹣6)2+32,
∵﹣2<0,
∴当x<6,w随x的增大而增大.
∵4≤x≤5.5,
∴当x=5.5时,w有最大值,最大值为﹣2×(5.5﹣6)2+32=31.5,
∴将批发价定为5.5千元时,每天获得的利润最大,最大利润是31.5千元.
七、(本题12分)
25.(12分)已知矩形ABCD,点E为直线BD上的一个动点(点E不与点B重合),连接AE,以AE为一边构造矩形AEFG(A,E,F,G按逆时针方向排列),连接DG.
(1)如图1,当==1时,请直接写出线段BE与线段DG的数量关系与位置关系;
(2)如图2,当==2时,请猜想线段BE与线段DG的数量关系与位置关系,并说明理由;
(3)如图3,在(2)的条件下,连接BG,EG,分别取线段BG,EG的中点M,N,连接MN,MD,ND,若AB=,∠AEB=45°,请直接写出△MND的面积.
【解答】解:(1)由题意得:四边形ABCD和四边形AEFG是正方形,
∴AB=AD,AE=AG,∠BAD=∠EAG=90°,
∴∠BAD﹣∠DAE=∠EAG﹣∠DAE,
∴∠BAE=∠DAG,
∴△BAE≌△DAG(SAS),
∴BE=DG,∠ABE=∠ADG,
∴∠ADG+∠ADB=∠ABE+∠ADB=90°,
∴∠BDG=90°,
∴BE⊥DG;
(2)BE=,BE⊥DG,理由如下:
由(1)得:∠BAE=∠DAG,
∵==2,
∴△BAE∽△DAG,
∴,∠ABE=∠ADG,
∴∠ADG+∠ADB=∠ABE+∠ADB=90°,
∴∠BDG=90°,
∴BE⊥DG;
(3)如图,
当B在线段BD上时,
作AH⊥BD于H,
∵tan∠ABD=,
∴设AH=2x,BH=x,
在Rt△ABH中,
x2+(2x)2=()2,
∴BH=1,AH=2,
在Rt△AEH中,
∵tan∠AEB=,
∴,
∴EH=AH=2,
∴BE=BH+EH=3,
∵BD==5,
∴DE=BD﹣BE=5﹣3=2,
由(2)得:,DG⊥BE,
∴DG=2BE=6,
∴S△BEG===9,
在Rt△BDG和Rt△DEG中,点M是BG的中点,点N是CE的中点,
∴DM=GM=,
∵NM=NM,
∴△DMN≌△GMN(SSS),
∵MN是△BEG的中位线,
∴MN∥BE,
∴△BEG∽△MNG,
∴=()2=,
∴S△MND=S△MNG=S△BEG=,
如图,
同上可得:BE=EH﹣BH=2﹣1=1,
DG=2BE=2,
∴=1,
∴S△BEG=,
综上所述:△DMN的面积是或.
八、(本题14分)
26.(14分)如图,已知抛物线:y=﹣2x2+bx+c与x轴交于点A,B(2,0)(A在B的左侧),与y轴交于点C,对称轴是直线x=,P是第一象限内抛物线上的任一点.
(1)求抛物线的解析式;
(2)若点D为线段OC的中点,则△POD能否是等边三角形?请说明理由;
(3)过点P作x轴的垂线与线段BC交于点M,垂足为点H,若以P,M,C为顶点的三角形与△BMH相似,求点P的坐标.
【解答】解:(1)由题意得:,
解得:,
∴抛物线的解析式为:y=﹣2x2+2x+4;
(2)△POD不可能是等边三角形,理由如下:
如图1,取OD的中点E,过点E作EP∥x轴,交抛物线于点P,连接PD,PO,
∵C(0,4),D是OC的中点,
∴E(0,1),
当y=1时,﹣2x2+2x+4=1,
2x2﹣2x﹣3=0,
解得:x1=,x2=(舍),
∴P(,1),
∴OD≠PD,
∴△POD不可能是等边三角形;
(3)设点P的坐标为(t,﹣2t2+2t+4),则OH=t,BH=2﹣t,
分两种情况:
①如图2,△CMP∽△BMH,
∴∠PCM=∠OBC,∠BHM=∠CPM=90°,
∴tan∠OBC=tan∠PCM,
∴====2,
∴PM=2PC=2t,MH=2BH=2(2﹣t),
∵PH=PM+MH,
∴2t+2(2﹣t)=﹣2t2+2t+4,
解得:t1=0,t2=1,
∴P(1,4);
②如图3,△PCM∽△BHM,则∠PCM=∠BHM=90°,
过点P作PE⊥y轴于E,
∴∠PEC=∠BOC=∠PCM=90°,
∴∠PCE+∠EPC=∠PCE+∠BCO=90°,
∴∠BCO=∠EPC,
∴△PEC∽△COB,
∴=,
∴=,
解得:t1=0(舍),t2=,
∴P(,);
综上,点P的坐标为(1,4)或(,).
2022-2023学年辽宁省抚顺市清原县九年级(上)期末数学试卷(含解析): 这是一份2022-2023学年辽宁省抚顺市清原县九年级(上)期末数学试卷(含解析),共29页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023年辽宁省抚顺市清原县中考数学二模试卷(含解析): 这是一份2023年辽宁省抚顺市清原县中考数学二模试卷(含解析),共32页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023年辽宁省抚顺市清原县中考数学三模试卷(含解析): 这是一份2023年辽宁省抚顺市清原县中考数学三模试卷(含解析),共28页。试卷主要包含了选择题,填空题,计算题,解答题等内容,欢迎下载使用。