黑龙江省哈尔滨市2020年中考数学试题(教师版)
展开哈尔滨市2020年初中升学考试
数学试卷
一、选择题
1.的倒数是( )
A. B. -8 C. 8 D.
【答案】A
【解析】
【分析】
由倒数的定义求解即可.
【详解】解:∵ ,
∴根据倒数的定义知:﹣8的倒数是.
故选:A.
【点睛】本题主要考查了倒数的定义,乘积为1的两数互为倒数.
2.下列运算一定正确的是( )
A. B. C. D.
【答案】C
【解析】
【分析】
根据合并同类项、同底数幂的乘法、幂的乘方以及完全平方公式逐项计算即可.
【详解】解:∵,∴选项A不正确;
∵,∴选项B不正确;
∵,∴选项C正确;
∵,∴选项D不正确;
故选C.
【点睛】本题考查了整式的运算,熟练掌握运算法则及完全平方公式是解答本题的关键.同底数的幂相乘,底数不变,指数相加;幂的乘方,底数不变,指数相乘;合并同类项时,把同类项的系数相加,所得和作为合并后的系数,字母和字母的指数不变. 完全平方公式是(a±b)2=a2±2ab+b2.
3.下列图形中既是轴对称图形又是中心对称图形的是( )
A. B. C. D.
【答案】B
【解析】
【分析】
根据轴对称图形与中心对称图形的概念求解.
【详解】解:A、该图形是轴对称图形,但不是中心对称图形,故A错误;
B、该图形既是轴对称图形又是中心对称图形,故B正确;
C、该图形是轴对称图形,但不是中心对称图形,故C错误;
D、该图形是轴对称图形,但不是中心对称图形,故D错误;
故选:B.
【点睛】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.
4.五个大小相同的正方体塔成的几何体如图所示,其左视图是( )
A. B. C. D.
【答案】C
【解析】
【分析】
根据从左边看得到的图形是左视图,可得答案.
【详解】解:从左边看第一层有两个小正方形,第二层右边有一个小正方形,
故选:C.
【点睛】本题考查了简单组合体的三视图,从左边看得到的图形是左视图.
5.如图是直径,点A为切点,交于点C,点D在上,连接,若,则的度数为( )
A. B. C. D.
【答案】B
【解析】
【分析】
根据同弧所对的圆心角等于所对圆周角的2倍,由可求出∠AOC=.再由AB为圆O的切线,得AB⊥OA,由直角三角形的两锐角互余,即可求出∠ABO的度数,
【详解】解:∵ ,
∴,
∵AB为圆O的切线,
∴AB⊥OA,即∠OAB=90°,
∴,
故选:B.
【点睛】此题考查了切线的性质,以及圆周角定理,熟练掌握切线的性质是解本题的关键.
6.将抛物线向上平移3个单位长度,再向右平移5个单位长度,所得的抛物线为( )
A B. C. D.
【答案】D
【解析】
【分析】
用顶点式表达式,按照抛物线平移的公式即可求解.
【详解】解:将抛物线先向上平移3个单位长度,再向右平移5个单位长度后,函数的表达式为:.
故选:D.
【点睛】主要考查了函数图象的平移,抛物线与坐标轴的交点坐标的求法,要求熟练掌握平移的规律:左加右减,上加下减.
7.如图,在中,,垂足为D,与关于直线AD对称,点的B对称点是,则的度数是( )
A. B. C. D.
【答案】A
【解析】
【分析】
由三角形内角和定理,得到,由轴对称的性质,得到,根据外角的性质即可得到答案.
【详解】解:在中,,
∴,
∵与关于直线AD对称,
∴,
∴;
故选:A.
【点睛】本题考查了轴对称的性质,三角形的外角性质,以及三角形的内角和定理,解题的关键是熟练掌握所学的性质定理,正确的进行角度的计算.
8.方程的解是( )
A. B. C. D.
【答案】D
【解析】
【分析】
根据题意可知,本题考察分式方程及其解法,根据方程解的意义,运用去分母,移项的方法,进行求解.
【详解】解:方程可化简为
经检验是原方程的解
故选D
【点睛】本题考察了分式方程及其解法,熟练掌握解分式方程的步骤是解决此类问题的关键.
9.一个不透明的袋子中装有9个小球,其中6个红球,3个绿球,这些小球除颜色外无其他差别,从袋子中随机摸出一个小球,则摸出的小球是红球的概率是( )
A. B. C. D.
【答案】A
【解析】
【分析】
根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.
【详解】解:∵一个不透明的袋子中装有9个小球,其中6个红球、3个绿球,
∴从袋子中随机摸出一个小球,则摸出的小球是红球的概率为.
故选:A.
【点睛】本题考查了概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率.
10.如图,在中,点D在BC上,连接AD,点E在AC上,过点E作,交AD于点F,过点E作,交BC于点G,则下列式子一定正确的是( )
A. B. C. D.
【答案】C
【解析】
【分析】
根据由平行线易得△AEF∽△ACD,△CEG∽△CAB,再根据相似三角形的性质和平行线分线段成比例定理逐个判断即可.
【详解】解:∵,
∴△AEF∽△ACD,
∴,故选项A错误;
∴,
∵,
∴△CEG∽△CAB,
∴,
∴,故选项B错误;,故选项D错误;
∵,
∴,
∵,
∴,
∴,故选项正确C.
故选:C.
【点睛】本题考查了平行线分线段成比例定理和相似三角形的性质和判定,能得出正确的比例式是解此题的关键.
二、填空题
11.将数4790000用科学计数法表示为_____________.
【答案】
【解析】
【分析】
用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此即可解题.
【详解】解:.
故答案为:.
【点睛】此题考查了科学记数法,科学记数法的表示形式为的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.
12.在函数中,自变量的取值范围是_____________________.
【答案】x≠7.
【解析】
【分析】
根据分式有意义,分母不等于0,可以求出x的范围.
【详解】解:由有意义,得
x-7≠0,
解得x≠7,
故答案为:x≠7.
【点睛】本题考查了函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:当函数表达式是整式时,自变量可取全体实数;当函数表达式是分式时,考虑分式的分母不能为0;当函数表达式是二次根式时,被开方数非负.
13.已知反比例函数的图像经过点,则的值是____________________.
【答案】﹣12
【解析】
【分析】
直接将点代入反比例函数解析式中,解之即可.
【详解】依题意,将点代入,得:,
解得:=﹣12,
故答案为:﹣12.
【点睛】本题主要考查反比例函数图象上的点的坐标特征,熟练掌握图象上的坐标与解析式的关系是解答的关键.
14.计算:的结果是___________________.
【答案】
【解析】
【分析】
根据题意可知,本题考察二次根式的运算,根据二次根式的化简,即可进行求解.
【详解】解:原式==
故答案为:
【点睛】本题考察了二次根式的运算,先化简再进行合并二次根式是解决此类问题的关键.
15.把多项式分解因式结果是________________________.
【答案】
【解析】
【分析】
先提公因式,再利用完全平方公式进行因式分解即可.
【详解】原式==,
故答案为:.
【点睛】本题主要考查因式分解,熟练掌握因式分解的方法是解答的关键.
16.抛物线的顶点坐标为______________________________.
【答案】(1,8)
【解析】
【分析】
根据题意可知,本题考察二次函数的性质,根据二次函数的顶点式,进行求解.
【详解】解:由二次函数性质可知,的顶点坐标为(,)
∴的顶点坐标为(1,8)
故答案为:(1,8)
【点睛】本题考查了二次函数的性质,先把函数解析式配成顶点式根据顶点式即可得到顶点坐标.
17.不等式的解集为_______________.
【答案】x≤-3.
【解析】
【分析】
分别求出每个不等式的解集,然后再取它们的公共部分即可.
【详解】
解不等式①得,x≤-3;
解不等式②得,x<-1;
所以,不等式组的解集为:x≤-3.
【点睛】本题主要考查了求不等式组的解集,熟记口诀“大大取大,小小取小,大小小大中间找,大大小小找不了(空集)”.
18.一个扇形的面积为,半径为6cm,则扇形的圆心角是_______________度.
【答案】130°.
【解析】
【分析】
设扇形的圆心角是n°,根据扇形的面积公式即可得到一个关于n的方程,解方程即可求解.
【详解】解:设扇形的圆心角是n°,根据扇形的面积公式得:13π=,
解得n=130.
故答案是:130°.
【点睛】本题考查了扇形的面积公式,正确理解公式是关键.
19.在中,,为BC边上的高,,则BC的长为___________.
【答案】7或5
【解析】
【分析】
如图所示,分D在BC之间和BC延长线上两种情况考虑,先由求出BD,再求出BC的长.
【详解】解:如图,∵在Rt△ABD中,,,
∴,即:,
∴,
当D在BC之间时,BC=BD+CD=6+1=7;
当D在BC延长线上时,BC=BD-CD=6-1=5;
故答案为:7或5.
【点睛】此题主要考查了解三角形,根据已知得出两种符合要求图形,即三角形为钝角三角形或锐角三角形分别分析是解题关键.
20.如图,在菱形中,对角线相交于点O,点E在线段BO上,连接AE,若,,,则线段AE的长为_____.
【答案】
【解析】
【分析】
设BE=x,根据菱形性质可得到AB= AD=CD=2x,进而得到,解得x值,根据勾股定理即可求得AE值.
【详解】解:设BE=x,
∵菱形,
∴AB= AD=CD=2x,
∵,
∴,
∴BD=3x,
∴OB=OD=,
∴,
∴x=2,
∴AB=4,BE=2,
∴,
∴,
故答案为:.
【点睛】本题考查菱形的性质结合勾股定理的应用,熟练掌握菱形性质是解题的关键.
三、解答题
21.先化简,再求代数式的值,其中
【答案】原式,
【解析】
【分析】
先根据分式的运算法则化简,再利用求得x的值,代入计算即可.
【详解】解:原式
,
∵,
∴
,
∴原式
.
【点睛】本题考查了分式的化简求值,特殊角的三角函数值,二次根式的计算,熟练掌握相关运算法则是解决本题的关键.
22.如图,方格纸中每个小正方形的边长为1,线段AB和线段CD的端点均在小正方形的顶点上.
(1)在图中画出以AB为边的正方形,点E和点F均在小正方形的顶点上;
(2)在图中画出以CD为边的等腰三角形,点G在小正方形的顶点上,且的周长为,连接EG,请直接写出线段EG的长.
【答案】(1)画图见解析;(2)画图见解析,EG=.
【解析】
【分析】
(1)根据正方形的判定作图可得;
(2)根据等腰三角形与勾股定理可得答案.
【详解】解:(1)如图所示,正方形ABEF即为所求;
(2)如图所示,△CDG即为所求,由勾股定理,得EG=.
【点睛】本题考查作图-应用与设计、等腰三角形的性质、勾股定理、正方形的判定和性质等知识,解题的关键是学会利用思想结合的思想解决问题,属于中考常考题型.
23.为了丰富同学们的课余生活,冬威中学开展以“我最喜欢的课外活动小组”为主题的调查活动,围绕在绘画、剪纸、舞蹈、书法四类活动小组中,你最喜欢的哪一类?的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的条形统计图,其中最喜欢绘画小组的学生人数占所调查人数的,请你根据图中提供的信息回答下列问题:
(1)在这次调查中,一共抽取了多少名学生;
(2)请通过计算补全条形统计图;
(3)若冬威中学共有800名学生,请你估计该中学最喜欢剪纸小组的学生有多少名.
【答案】(1)50;(2)见解析;(3)320
【解析】
【分析】
(1)根据最喜欢绘画小组的学生人数占所调查人数的30%求出总人数即可;
(2)先求出最喜欢舞蹈的学生人数,进而补全条形统计图即可;
(3)根据题意列出算式,计算即可得到结果.
【详解】解:(1)15÷30%=50(名),
答:本次调查共抽取了50名学生;
(2)50﹣15﹣20﹣5=10(名),
补全条形统计图如图所示:
(3)800×=320(名),
答:估计该中学最喜欢剪纸小组的学生有320名.
【点睛】本题考查的是条形统计图的综合运用,读懂统计图,从统计图中得到必要的信息是解决问题的关键.
24.已知,在中,,点D,点E在BC上,,连接.
(1)如图1,求证:;
(2)如图2,当时,过点B作,交AD的延长线于点F,在不添加任何辅助线的情况下,请直接写出图2中四个等腰三角形,使写出的每个等腰三角形的顶角都等于45°.
【答案】(1)证明见解析;(2)、、、.
【解析】
【分析】
(1)可得,进而利用SAS证明,即可得出结论;
(2)由已知计算出图形中角的度数,由等角对等边即可得出结论.
【详解】(1)证明:如图1,
,
,
在和中,
,
∴(SAS),
∴;
(2)顶角为45°的等腰三角形有以下四个:、、、.
证明:∵,,
∴,,
∵,,即:是等腰三角形,;
∴,
∴,
∴,
∴,
∴、即:、是等腰三角形,,
∵
∴∠DBF=∠C=45°,,
又∵,
∴,
∴、即:是等腰三角形,.
【点睛】本题考察了等腰三角形性质和判定及全等三角形性质和判定,掌握等腰三角形性质和判定是解题关键.
25.昌云中学计划为地理兴趣小组购买大、小两种地球仪,若购买1个大地球仪和3个小地球仪需要136元;若购买2个大地球仪和1个小地球仪需要132元.
(1)求每个大地球仪和每个小地球仪各多少元;
(2)昌云中学决定购买以上两种地球仪共30个,总费用不超过960元,那么昌云中学最多可以购买多少个大地球仪.
【答案】(1)每个大地球仪52元,每个小地球仪28元;(2)昌云中学最多可以购买5个大地球仪.
【解析】
【分析】
(1)设每个大地球仪x元,每个小地球仪y元,根据题意列出方程组求解即可;
(2)设昌云中学可以购买m个大地球仪,则购买小地球仪(30-m)个,根据题意列出不等式求解即可.
详解】解:(1)设每个大地球仪x元,每个小地球仪y元,
由题意可得,
解得:,
答:每个大地球仪52元,每个小地球仪28元;
(2)设昌云中学可以购买m个大地球仪,则购买小地球仪(30-m)个,
根据题意得52m+28(30-m)≤960
解得m≤5
∴昌云中学最多可以购买5个大地球仪.
【点睛】本题考查了二元一次方程组的实际应用和一元一次不等式的实际应用,根据题意列出式子是解题关键.
26.已知是的外接圆,AD为的直径,,垂足为E,连接BO,延长BO交AC于点F.
(1)如图1,求证:;
(2)如图2,过点D作,交于点G,点H为GD的中点,连接OH,求证:;
(3)如图3,在(2)的条件下,连接CG,若的面积为,求线段CG的长.
【答案】(1)见详解;(2)见详解;(3)CG=.
【解析】
【分析】
(1)先推出∠BAD=∠CAD,然后根据圆周角定理可得出∠BOD=2∠BAD=2∠CAD,根据∠BOD=∠AOF,可得出∠AOF=2∠CAD,根据∠BFC=∠AOF+∠CAD,即可证明结论;
(2)连接OG,证明△OBE≌△DOH,即可证明结论;
(3)连接AG,过A点作AM⊥CG于点M,过F点作FN⊥AD于点N,先推出DE=2OE,设OE=m,则DE=2m,OB=OD=OA=3m,AE=4m,根据勾股定理得出CE=BE=,再求出tan∠BOE===,tan∠EAC===,根据tan∠AOF=tan∠BOE=,得出=,设ON=a,则NF=a,可得tan∠EAC=,解出AN,根据AN+NO=AO,解出a=m,再根据S△AOF=·OA·FN=,可求出m=1,可得出DH=1,OD=3, BE=CE=OH=,AE=4,根据勾股定理可得AC=,根据OD=OA,DH=HG,得出AG=2OH=,推出cos∠ADG=cos∠ACM,即可求出CM=,利用勾股定理可得AM=,GM=,即可得出答案.
【详解】解:(1)∵AD为的直径,,
∴,BE=CE,
∴∠BAD=∠CAD,
∵∠BOD=2∠BAD,
∴∠BOD=2∠CAD,
∵∠BOD=∠AOF,
∴∠AOF=2∠CAD,
∵∠BFC=∠AOF+∠CAD,
∴∠BFC=2∠CAD+∠CAD=3∠CAD;
(2)连接OG,
∵点H为GD的中点,OG=OD,
∴DH=GH,OH⊥DG,
∵AD⊥BC,
∴∠AEB=∠OHD=90°,
∵DG∥BF,
∴∠BOH=∠OHD=90°,
即∠DOH+∠BOD=90°,
∵∠BOD+∠OBE=90°,
∴∠OBE=∠DOH,
又∵OB=OD,
∴△OBE≌△DOH,
∴BE=OH;
(3)如图,连接AG,过A点作AM⊥CG于点M,过F点作FN⊥AD于点N,
由(2)可知DH=OE,
∵DG=2DH=2OE,DG=DE,
∴DE=2OE,
设OE=m,则DE=2m,
∴OB=OD=OA=3m,
∴AE=4m,
在Rt△OBE中,BE==,
∴CE=BE=,tan∠BOE===,tan∠EAC===,
∵tan∠AOF=tan∠BOE=,
∴=,
设ON=a,则NF=a,
∴tan∠EAC=,
∴AN=4a,
∵AN+NO=AO,
∴4a+a=3m,
∴a=m,
∴FN=×m=m,
∵S△AOF=·OA·FN=,
∴·3m·m=,
∴m2=1,
∴m=±1,
∵m>0,
∴m=1,
∴DH=1,OD=3,由(2)得BE=CE=OH=,AE=4,
在Rt△AEC中AC=,
∵OD=OA,DH=HG,
∴AG=2OH=,
∵∠ADG+∠ACG=180°,∠ACM+∠ACG=180°,
∴∠ADG=∠ACM,
∴cos∠ADG=cos∠ACM,
∴,
∴,
∴CM=,
在Rt△ACM中,AM==,
在Rt△AGM中,GM==,
∴CG=GM-CM=.
【点睛】本题考查了圆周角定理,全等三角形性质和判定,锐角三角函数,垂径定理,勾股定理,掌握知识点灵活运用是解题关键.
27.已知,在平面直角坐标系中,点为坐标原点,直线与轴的正半轴交于点A,与轴的负半轴交于点B, ,过点A作轴的垂线与过点O的直线相交于点C,直线OC的解析式为,过点C作轴,垂足为.
(1)如图1,求直线的解析式;
(2)如图2,点N在线段上,连接ON,点P在线段ON上,过P点作轴,垂足为D,交OC于点E,若,求的值;
(3)如图3,在(2)的条件下,点F为线段AB上一点,连接OF,过点F作OF的垂线交线段AC于点Q,连接BQ,过点F作轴的平行线交BQ于点G,连接PF交轴于点H,连接EH,若,求点P的坐标.
【答案】(1);(2);(3).
【解析】
【分析】
(1)根据题意求出A,B的坐标即可求出直线AB的解析式;
(2)求出N(3,9),以及ON的解析式为y=3x,设P(a,3a),表达出PE及OD即可解答;
(3)如图,设直线GF交CA延长线于点R,交y轴于点S,过点F作FT⊥x轴于点T,先证明四边形OSRA为矩形,再通过边角关系证明△OFS≌△FQR,得到SF=QR,进而证明△BSG≌△QRG,得到SG=RG=6,设FR=m,根据,以及在Rt△GQR中利用勾股定理求出m的值,得到FS=8,AR=4,证明四边形OSFT为矩形,得到OT=FS=8,根据∠DHE=∠DPH,利用正切函数的定义得到,从而得到DH=,根据∠PHD=∠FHT,得到HT=2,再根据OT=OD+DH+HT,列出关于a的方程即可求出a的值,从而得到点P的坐标.
【详解】解:(1)∵CM⊥y轴,OM=9,
∴当y=9时,,解得:x=12,
∴C(12,9),
∵CA⊥x轴,则A(12,0),
∴OB=OA=12,则B(0,-12),
设直线AB的解析式为y=kx+b,
∴,解得:,
∴;
(2)由题意可得,∠CMO=∠OAC=∠MOA=90°,
∴四边形MOAC为矩形,
∴MC=OA=12,
∵NC=OM,
∴NC=9,则MN=MC-NC=3,
∴N(3,9)
设直线ON的解析式为,
将N(3,9)代入得:,解得:,
∴y=3x,
设P(a,3a)
∵PD⊥x轴交OC于点E,交x轴于点D,
∴,,
∴PE=,OD=a,
∴;
(3)如图,设直线GF交CA延长线于点R,交y轴于点S,过点F作FT⊥x轴于点T,
∵GF∥x轴,
∴∠OSR=∠MOA=90°,∠CAO=∠R=90°,∠BOA=∠BSG=90°,∠OAB=∠AFR,
∴∠OSR=∠R=∠AOS=∠BSG=90°,
则四边形OSRA为矩形,
∴OS=AR,SR=OA=12,
∵OA=OB,
∴∠OBA=∠OAB=45°,
∴∠FAR=90°-∠AFR=45°,
∴∠FAR=∠AFR,
∴FR=AR=OS,
∵QF⊥OF,
∴∠OFQ=90°,
∴∠OFS+∠QFR=90°,
∵∠SOF+∠OFS=90°,
∴∠SOF=∠QFR,
∴△OFS≌△FQR,
∴SF=QR,
∵∠SFB=∠AFR=45°,
∴∠SBF=∠SFB,
∴BS=SF=QR,
∵∠SGB=∠RGQ,
∴△BSG≌△QRG,
∴SG=RG=6,
设FR=m,则AR=m,
∴QR=SF=12-m,
∴AF=,
∵,
∴GQ=,
∵QG2=GR2+QR2,即,解得:m=4,
∴FS=8,AR=4,
∵∠OAB=∠FAR,FT⊥OA,FR⊥AR,
∴FT=FR=AR=4,∠OTF=90°,
∴四边形OSFT为矩形,
∴OT=FS=8,
∵∠DHE=∠DPH,
∴tan∠DHE=tan∠DPH,
∴,
由(2)可知,DE=,PD=3a,
∴,解得:DH=,
∴tan∠PHD=,
∵∠PHD=∠FHT,
∴tan∠FHT=,
∴HT=2,
∵OT=OD+DH+HT,
∴,
∴a=,
∴
【点睛】本题考查了一次函数与几何综合问题,涉及了一次函数解析式的求法,矩形的判定与性质,全等三角形的判定与性质以及锐角三角函数的定义等知识点,第(3)问难度较大,解题的关键是正确做出辅助线,熟悉几何的基本知识,综合运用全等三角形以及锐角三角函数的概念进行解答.
2018年黑龙江省哈尔滨市中考数学试题及答案: 这是一份2018年黑龙江省哈尔滨市中考数学试题及答案,共9页。试卷主要包含了填空题等内容,欢迎下载使用。
黑龙江省哈尔滨市2020年中考数学试题(含详解): 这是一份黑龙江省哈尔滨市2020年中考数学试题(含详解),共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023年黑龙江省哈尔滨市阿城区中考三模数学试题: 这是一份2023年黑龙江省哈尔滨市阿城区中考三模数学试题,共9页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。