所属成套资源:2023年中考数学二轮复习《二次函数压轴题》强化练习(含答案)
2023年中考数学二轮复习《压轴题-正方形存在问题》强化练习(含答案)
展开
这是一份2023年中考数学二轮复习《压轴题-正方形存在问题》强化练习(含答案),共24页。试卷主要包含了如图1,抛物线C1等内容,欢迎下载使用。
2023年中考数学二轮复习《压轴题-正方形存在问题》强化练习1.如图,某一次函数与二次函数y=x2+mx+n的图象交点为A(﹣1,0),B(4,5).(1)求抛物线的解析式;(2)点C为抛物线对称轴上一动点,当AC与BC的和最小时,点C的坐标为 ;(3)点D为抛物线位于线段AB下方图象上一动点,过点D作DE⊥x轴,交线段AB于点E,求线段DE长度的最大值;(4)在(2)条件下,点M为y轴上一点,点F为直线AB上一点,点N为平面直角坐标系内一点,若以点C,M,F,N为顶点的四边形是正方形,请直接写出点N的坐标. 2.如图1,抛物线y=ax2+2x+c经过点A(﹣1,0)、C(0,3),并交x轴于另一点B,点P(x,y)在第一象限的抛物线上,AP交直线BC于点D.(1)求该抛物线的函数表达式;(2)当点P的坐标为(1,4)时,求四边形BOCP的面积;(3)点Q在抛物线上,当的值最大且△APQ是直角三角形时,求点Q的横坐标;(4)如图2,作CG⊥CP,CG交x轴于点G(n,0),点H在射线CP上,且CH=CG,过GH的中点K作KI∥y轴,交抛物线于点I,连接IH,以IH为边作出如图所示正方形HIMN,当顶点M恰好落在y轴上时,请直接写出点G的坐标. 3.如图,抛物线y=a(x﹣h)2+k(a≠0)的顶点为A,对称轴与x轴交于点C,当以AC为对角线的正方形ABCD的另外两个顶点B、D恰好在抛物线上时,我们把这样的抛物线称为美丽抛物线,正方形ABCD为它的内接正方形.(1)当抛物线y=ax2+1是美丽抛物线时,则a= ;当抛物线y=x2+k是美丽抛物线时,则k= ;(2)若抛物线y=ax2+k是美丽抛物线时,则请直接写出a,k的数量关系;(3)若y=a(x﹣h)2+k是美丽抛物线时,(2)a,k的数量关系成立吗?为什么?(4)系列美丽抛物线yn=an(x﹣n)2+kn(n为小于7的正整数)顶点在直线y=x上,且它们中恰有两条美丽抛物线内接正方形面积比为1:16.求它们二次项系数之和. 4.在平面直角坐标系中,已知抛物线L1:y=ax2+bx+c经过A(﹣2,0),B(1,﹣)两点,且与y轴交于点C,点B是该抛物线的顶点.(1)求抛物线L1的表达式;(2)将L1平移后得到抛物线L2,点D,E在L2上(点D在点E的上方),若以点A,C,D,E为顶点的四边形是正方形,求抛物线L2的解析式. 5.在平面直角坐标系中,点O为坐标原点,点A、C分别在x轴、y轴正半轴上,四边形OABC是正方形,抛物线y=﹣x2+bx+c经过点B、C,OA=18.(1)如图1,求抛物线的解析式;(2)如图2,点D是OA的中点,经过点D的直线交AB于点E、交y轴于点F,连接BD,若∠EDA=2∠ABD,求直线DE的解析式;(3)如图3,在(2)的条件下,点G在OD上,连接GC、GE,点P在AB右侧的抛物线上,点Q为BP中点,连接DQ,过点B作BH⊥BP,交直线DP于点H,连接CH、GH,若GC=GE,DQ=PQ,求△CGH的周长 6.如图1所示,动点A、B同时从原点O出发,运动的速度都是每秒1个单位,动点A沿x轴正方向运动,动点B沿y轴正方向运动,以OA、OB为邻边建立正方形OACB,抛物线y=﹣x²+bx+c经过B、C两点,假设A、B两点运动的时间为t秒.(1)当t=3秒时,求此时抛物线的解析式;此时抛物线上是否存在一点D,使得S△BCD=6?若存在,求出点D的坐标;若不存在,说明理由;(2)如图2,在(1)的条件下,有一条平行于y轴的动直线l,交抛物线于点E,交直线OC于点F,若以O、B、E、F四个点构成的四边形是平行四边形,求点F的坐标;(3)在动点A、B运动的过程中,若正方形OACB内部有一个点P,且满足OP=,CP=,∠OPA=135°,直接写出此时AP的长度. 7.如图1,抛物线C1:y=ax2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,且顶点为C,直线y=kx+2经过A,C两点.(1)求直线AC的表达式与抛物线C1的表达式;(2)如图2,将抛物线C1沿射线AC方向平移一定距离后,得到抛物线为C2,其顶点为D,抛物线C2与直线y=kx+2的另一交点为E,与x轴交于M,N两点(M点在N点右边),若S△MDE=S△MAE,求点D的坐标;(3)如图3,若抛物线C1向上平移4个单位得到抛物线C3,正方形GHST的顶点G,H在x轴上,顶点S,T在x轴上方的抛物线C3上,P(m,0)是射线GH上一动点,则正方形GHST的边长为 ,当m= 时,有最小值 . 8.如图,在平面直角坐标系中,抛物线y=﹣x2+bx+与x轴正半轴交于点A,且点A的坐标为(3,0),过点A作垂直于x轴的直线l.P是该抛物线上的任意一点,其横坐标为m,过点P作PQ⊥l于点Q;M是直线l上的一点,其纵坐标为﹣m+,以PQ,QM为边作矩形PQMN.(1)求b的值.(2)当点Q与点M重合时,求m的值.(3)当矩形PQMN是正方形,且抛物线的顶点在该正方形内部时,求m的值.(4)抛物线在矩形PQMN内的部分称为被扫描部分.请问该抛物线是否全部被扫描?若是,请说明理由,若否,直接写出抛物线被扫描部分自变量的取值范围.
参考答案1.解:(1)将A(﹣1,0),B(4,5)代入y=x2+mx+n得,,∴,∴抛物线的解析式为y=x2﹣2x﹣3;(2)设直线AB的函数解析式为y=kx+b,,∴,∴直线AB的解析式为y=x+1,∵AC+BC≥AB,∴当点A、B、C三点共线时,AC+BC的最小值为AB的长,∵抛物线y=x2﹣2x﹣3的对称轴为x=1,∴当x=1时,y=2,∴C(1,2),故答案为:(1,2);(3)设D(a,a2﹣2a﹣3),则E(a,a+1),∴DE=(a+1)﹣(a2﹣2a﹣3)=﹣a2+3a+4(﹣1<a<4),∴当a=时,DE的最大值为;(4)当CF为对角线时,如图,此时四边形CMFN是正方形,∴N(1,1),当CF为边时,若点F在C的上方,此时∠MFC=45°,∴MF∥x轴,∵△MCF是等腰直角三角形,∴MF=CN=2,∴N(1,4),当点F在点C的下方时,如图,四边形CFNM是正方形,同理可得N(﹣1,2),当点F在点C的下方时,如图,四边形CFMN是正方形,同理可得N(,),综上:N(1,1)或(1,4)或(﹣1,2)或(,).2.解:(1)由题意得,,∴,∴该抛物线的函数表达式为:y=﹣x2+2x+3;(2)当y=0时,﹣x2+2x+3=0,∴x1=﹣1,x2=3,∴B(3,0),∵PC2+BC2=[1+(4﹣3)2]+(32+32)=20,PB2=[(3﹣1)2+42]=20,∴PC2+BC2=PB2,∴∠PCB=90°,∴S△PBC=3,∵S△BOC=,∴S四边形BOCP=S△PBC+S△BOC=3+=;(3)如图1,作PE∥AB交BC的延长线于E,设P(m,﹣m2+2m+3),∵B(3,0),C(0,3),∴直线BC的解析式为:y=﹣x+3,由﹣x+3=﹣m2+2m+3得,x=m2﹣2m,∴PE=m﹣(m2﹣2m)=﹣m2+3m,∵PE∥AB,∴△PDE∽△ADB,∴===﹣ (m﹣)2+,∴当m=时,()最大=,当m=时,y=﹣()2+2×+3=,∴P(,),设Q(n,﹣n2+2n+3),如图2,当∠PAQ=90°时,过点A作y轴平行线AF,作PF⊥AF于F,作QG⊥AF于G,则△AFP∽△GQA,∴=,∴=,∴n=,如图3,当∠AQP=90°时,过QN⊥AB于N,作PM⊥QN于M,可得△ANQ∽△QMP,∴=,∴=,可得n1=1,n2=,如图4,当∠APQ=90°时,作PT⊥AB于T,作QR⊥PT于R,同理可得:=,∴n=,综上所述:点Q的横坐标为:或1或或;(4)如图5,作GL∥y轴,作RC⊥GL于L,作MT⊥KI于T,作HW⊥IK于点W,则△GLC≌△CRH,△ITM≌△HWI.∴RH=OG=﹣n,CR=GL=OC=3,MT=IW,∴G(n,0),H(3,3+n),∴K(,),∴I(,﹣()2+n+3+3),∵TM=IW,∴=()2+n+6﹣(3+n),∴(n+3)2+2(n+3)﹣12=0,∴n1=﹣4+,n2=﹣4﹣(舍去),∴G(﹣4+,0).3.解:(1)函数y=ax2+k的图象如下:①抛物线y=ax2+1是美丽抛物线时,则AC=1,∵四边形ABCD为正方形,则点D的坐标为(,),将点D的坐标代入y=ax2+1得:=a()2+1,解得a=﹣2;②同理可得,点D的坐标为(k,k),将点D的坐标代入y=x2+k得:k=(k)2+1,解得k=0(不合题意)或﹣4;故答案为:﹣4;(2)由(1)知,点D的坐标为(k,k),将点D的坐标代入y=ax2+k得:k=a(k)2+k,解得ak=﹣2;(3)答:成立.∵美丽抛物线沿x轴向右或向左平移后得到的抛物线仍然是美丽抛物线.∴美丽抛物线y=a(x﹣h)2+k沿x轴经过适当平移后为抛物线y=ax2+k.∴ak=﹣2;(4)设这两条美丽抛物线的顶点坐标分别为(k,k)和(m,m),(k,m为小7的正整数,且k<m),它们的内接正方形的边长比为k:m=1:4,∴m=4k,.∴这两条美丽抛物线分别为和.∵,=﹣2,∴a1=﹣12,a4=﹣3.∴a1+a4=﹣15.答:这两条美丽抛物线对应的二次函数的二次项系数和为﹣15.4.解:(1)设抛物线L1的表达式是y=a(x﹣1)2﹣,∵抛物线L1过点A(﹣2,0),∴a(﹣2﹣1)2﹣=0,解得a=,∴y=(x﹣1)2﹣.即抛物线L1的表达式是y=(x﹣1)2﹣;(2)令x=0,则y=﹣2,∴C(0,﹣2).Ⅰ.当AC为正方形的对角线时,如图所示,∵AE3=E3C=CD3=D3A=2,∴点D3的坐标为(0,0),点E3的坐标为(﹣2,﹣2).设y=x2+bx,则b=即抛物线L2的解析式是y=x2+x.Ⅱ.当AC为边时,分两种情况,如图,第①种情况,点D1,E1在AC的右上角时.∵AO=CO=E1O=D1O=2,∴点D1的坐标为(0,2),点E1的坐标为(2,0).设y=x2+bx+2,则b=﹣,即抛物线L2的解析式是y=x2﹣x+2.第②种情况,点D2E2在AC的左下角时,过点D2作D2M⊥x轴,则有△AD2M≌△AD1O,∴AO=AM,D1O=D2M.过E2作E2N⊥y轴,同理可得,△CE2N≌△CE1O,∴CO=CN,E1O=E2N.则点D2的坐标为(﹣4,﹣2),点E2的坐标为(﹣2,﹣4),设C,则,解得,即抛物线L2的解析式是y=x2+x﹣4.综上所述:L2的表达式为:y=x2+x,y=x2+x+2或y=x2+x﹣4.5.解:∵四边形OABC是正方形,抛物线y=﹣x2+bx+c经过点B、C,OA=18.∴AB=OC=OA=18,∴C(0,18),B(18,18),∴c=18,∴18=﹣×182+bx+18,解得b=2,∴抛物线的解析式为y=﹣x2+2x+18;(2)如图,在AD延长线时取DI=DE,连接IE,设∠ABD=α,∵∠EDA=2∠ABD,∴∠EDA=2α,∵DI=DE,∴∠EID=∠IED=α,∵点D是OA的中点,∴OD=DA=9,∴tanα==,∴tan∠EIA==,设AE=x,则AI=2x,∴ED=DI=IA﹣DA=2x﹣9,在Rt△ADE中,ED2=AD2+AE2,即(2x﹣9)2=92+x2,解得x1=12,x2=0 (舍),∴AE=12,∴E(18,12),∵D(9,0),设直线ED的解析式为y=kx+t,∴,解得,∴直线DE的解析式为y=x﹣12;(3)如图,延长BD,交y轴于点M,设直线DP交y轴于点S,∵OD=DA,∠DOM=∠DAB,∠ODM=∠ADB,∴△ODM≌△ADB(ASA),∴MD=DB,∵点Q为BP中点,DQ=PQ,∴DQ=BQ=PQ,∴∠QDB=∠QBD,∠QDP=∠QPD,∠QDB+∠QBD+∠QDP+∠QPD=180°,∴∠BDQ+∠PDQ=90°,即∠BDP=90°,∴PH⊥BD,∴∠SDO+∠MDO=∠MDO+∠OMD=90°,∴∠SDO=∠OMD=∠ABD,∴tan∠SDO=tan∠ABD==,∴OS=OD=,∴S(0,),设直线SD的解析式为y=mx+n,将点S(0,),D(9,0)代入得,,解得,∴直线SD的解析式为y=﹣x+,联立,解得,,∵点P在AB右侧的抛物线上,∴P(27,﹣9),∵D(9,0),B(18,18),∴PD=9,BD=9,∴DB=DP,∴△DBP是等腰直角三角形,∴∠DBP=45°,DQ⊥BP,∵BH⊥BP,∴BH∥DQ,∴=1,∴DH=DP,∵D(9,0),P(27,﹣9),∴H(﹣9,9),∵点G在OD上,GC=GE,C(0,18),E(18,12),设G(p,0),则p2+182=(18﹣p)2+122,解得p=4,∴G(4,0),∵H(﹣9,9),G(4,0),C(0,18),∴CG=2,CH=9,HG=5,∴CG+HG+CH=2+5+9,∴△CGH的周长为2+5+9.6.解:(1)∵t=3秒,∴OA=OB=3,∴点B(0,3),C(3,3),将点B、C代入抛物线得,,解得,∴抛物线解析式为y=﹣x2+3x+3,设BC边上的高为h,∵BC=OA=3,S△BCD=6,∴h=4,∴点D的纵坐标为3﹣4=﹣1,令y=﹣1,则﹣x2+3x+3=﹣1,整理得,x2﹣3x﹣4=0,解得x1=﹣1,x2=4,所以,D1(﹣1,﹣1),D2(4,﹣1);(2)∵OB=3,∴EF=3,设E(m,﹣m2+3m+3),F(m,m),若E在F上方,则,﹣m2+3m+3﹣m=3,整理得,m2﹣2m=0,解得m1=0(舍去),m2=2,∴F1(2,2),若F在E上方,则,m﹣(﹣m2+3m+3)=3,整理m2﹣2m﹣6=0,解得m1=1﹣,m2=1+,∴F2(1﹣,1﹣),F3(1+,1+);(4)如图,将△AOP绕点A逆时针旋转90°得到△AP′C,由旋转的性质得,AP′=AP,P′C=OP=,∠AP′C=∠OPA=135°,∵△APP′是等腰直角三角形,∴∠AP′P=45°,∴∠PP′C=135°﹣45°=90°,由勾股定理得,PP′=,所以,AP=PP′=×=1.7.解:(1)∵直线y=kx+2经过A(﹣1,0),∴﹣k+2=0,解得k=2,∴直线AC的表达式为y=2x+2;由抛物线与x轴交于A(﹣1,0),B(3,0)两点,得抛物线的对称轴为直线x=1,当x=1时,y=2×1+2=4,∴抛物线的顶点C的坐标为(1,4);设抛物线的表达式为y=a(x﹣1)2+4,则4a+4=0,解得a=﹣1,∴抛物线C1的表达式为y=﹣(x﹣1)2+4,即y=﹣x2+2x+3.(2)如图2,作DQ⊥x轴于点Q,EF⊥DQ于点F,设抛物线C2的顶点D的横坐标为t.∵抛物线C2由抛物线C1沿射线AC方向平移得到,∴D(t,2t+2),∴抛物线C2的表达式可表示为y=﹣(x﹣t)2+2t+2,由,得2x+2=﹣(x﹣t)2+2t+2,解关于x的方程,得x1=t﹣2,x2=t,则点E、F的横坐标分别为t﹣2、t,∴EF=t﹣(t﹣2)=2,∵S△MDE=S△MAE,∴=,∴=;∵EF∥AQ,∴△DEF∽△DAQ,∴,∴2=AQ,∴AQ=5,∴OQ=5﹣1=4;当x=4时,y=2×4+2=10,∴D(4,10).(3)由(1)得,抛物线C1的表达式为y=﹣(x﹣1)2+4,将抛物线y=﹣(x﹣1)2+4向上平移4个单位得到的抛物线为y=﹣(x﹣1)2+8,即y=﹣x2+2x+7,∴抛物线C3的表达式为y=﹣x2+2x+7.由题意可知,正方形GHST与抛物线C3有相同的对称轴直线x=1,如图3,设H(t,0),则S(t,2t﹣2),∴﹣t2+2t+7=2t﹣2,解得t1=3,t2=﹣3(不符合题意,舍去),∴H(3,0).∴SH=2(t﹣1)=2×(3﹣1)=4,∴正方形的边长为4;将△PSH绕点S顺时针90°得到△KST,取SK的中点R,连结TR、PR,则点K在GT上,设PS=KS=t(t>0),则TR=SR=KS=t,由旋转得,∠PSR=90°,∴PR=t,∵PR+TR≥PT,∴t+t≥PT,∴,即,∴的最小值为;如图4,当=时,则点R落在PT上.设PT交SH于点L.∵∠PSL=∠TSR=∠PTS,∠SPL=∠TPS(公共角),∴△PLS∽△PST,∴=,∴SL=2﹣2;∵∠KTS=∠LST=90°,ST=TS(公共边),∠TSK=∠STL,∴△KST≌△LTS(ASA),∴PH=KT=SL=2﹣2,∴OP=3+2﹣2=2+1,∴P(2+1,0),∴m=2+1.故答案为:4,2+1,﹣.8.解:(1)把点A(3,0)代入y=﹣x2+bx+,得到0=﹣+3b+,解得b=1.(2)∵抛物线的解析式为y=﹣x2+x+,∴P(m,﹣m2+m+),∵M,Q重合,∴﹣m+=﹣m2+m+,解得m=0或4.(3)y=﹣x2+x+=﹣(x﹣1)2+2,∴抛物线的顶点坐标为(1,2),由题意PQ=MQ,且抛物线的顶点在该正方形内部,∴3﹣m=﹣m+﹣(﹣m2+m+)且﹣m+>2,得m<﹣解得m=1﹣或1+(不合题意舍弃),∴m=1﹣.(4)当m≤3和m≥4时,抛物线不能被覆盖,理由如下:如图4﹣1中,当点P在第三象限时,随点P向下移动,能把抛物线在直线l的左侧部分全部扫描,当m=4时,点M与点Q重合,当m≥4时,矩形你能覆盖抛物线在直线x=4的右侧部分(包括m=4),∴抛物线被扫描部分自变量的取值范围为:x≤3或x≥4,
相关试卷
这是一份2023年中考数学二轮复习《压轴题-圆存在问题》强化练习(含答案),共18页。试卷主要包含了定义等内容,欢迎下载使用。
这是一份2023年中考数学二轮复习《压轴题-相似问题》强化练习(含答案),共22页。试卷主要包含了如图,已知抛物线等内容,欢迎下载使用。
这是一份2023年中考数学二轮复习《压轴题-平行四边形存在问题》强化练习(含答案),共20页。试卷主要包含了如图,抛物线M,如图,已知二次函数L1等内容,欢迎下载使用。