搜索
    上传资料 赚现金
    2022-2023年人教版数学八年级下册专项复习精讲精练:专题03勾股定理八大模型(原卷版+解析版)
    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 原卷
      2022-2023年人教版数学八年级下册专项复习精讲精练:专题03勾股定理八大模型(原卷版).docx
    • 解析
      2022-2023年人教版数学八年级下册专项复习精讲精练:专题03勾股定理八大模型(解析版).docx
    2022-2023年人教版数学八年级下册专项复习精讲精练:专题03勾股定理八大模型(原卷版+解析版)01
    2022-2023年人教版数学八年级下册专项复习精讲精练:专题03勾股定理八大模型(原卷版+解析版)02
    2022-2023年人教版数学八年级下册专项复习精讲精练:专题03勾股定理八大模型(原卷版+解析版)03
    2022-2023年人教版数学八年级下册专项复习精讲精练:专题03勾股定理八大模型(原卷版+解析版)01
    2022-2023年人教版数学八年级下册专项复习精讲精练:专题03勾股定理八大模型(原卷版+解析版)02
    2022-2023年人教版数学八年级下册专项复习精讲精练:专题03勾股定理八大模型(原卷版+解析版)03
    还剩20页未读, 继续阅读
    下载需要15学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022-2023年人教版数学八年级下册专项复习精讲精练:专题03勾股定理八大模型(原卷版+解析版)

    展开
    这是一份2022-2023年人教版数学八年级下册专项复习精讲精练:专题03勾股定理八大模型(原卷版+解析版),文件包含2022-2023年人教版数学八年级下册专项复习精讲精练专题03勾股定理八大模型解析版docx、2022-2023年人教版数学八年级下册专项复习精讲精练专题03勾股定理八大模型原卷版docx等2份试卷配套教学资源,其中试卷共77页, 欢迎下载使用。

    专题03勾股定理八大模型

    一、    直角三角形锐角平分线

    二、    形翻折问题

    三、    赵爽弦图

    四、    风吹树折

    五、    风吹荷花模型

    六、    378578模型

    七、    蚂蚁爬行

    八、    重美四边形

    一、    直角三角形锐角平分线

    运用句股定理计算是中考必考知识点,如何巧妙地构造直角三角形是关键.有些难题,同学们找到了直角三角形,但是还是不会求解,关键一点就是忽略了设未知数列方程来求解.

    二、    形翻折问题

     

    矩形的折叠一定要注意折叠前后的边角对应关系,计算时联想到利用勾股定理对新形成的直角三角形进行求解.

    三、    赵爽弦图

    “赵爽弦图”的面积关系是中考常考的一种题型,一般出现在选择题、填空题中,如果能够记住面积之间的关系,那么做此类题时一定非常高效.

    四、    风吹树折

    风吹树折类题就数学知识本身其实很简单,考查的就是句股定理,最多设个未知数列方程就能求解,但是对很多同学来说,它的难点在于语言文字如何转化成数学模型.

    五、    风吹荷花模型

    风吹荷花类题和风吹树折类题一样,数学知识本身其实很简单,考查的就是句股定理,正确设出未知数列方程就能求解,但是对很多同学来说,它的难点也是语言文字如何转化成数学模型。

    六、    378578模型

    利用勾股定理解三角形是中考中比较难的一类题目,如果对378578模型比较熟悉,知道其中一个角是60”,那么对于求面积和求角度类的题目就可以直接秒杀了.

    七、    蚂蚁爬行

    蚂蚁爬行的最值问题是非常经典的一类最值问题,我们如果能够记住最值的特点,那么解题将会更高效.

    八、    美四边形

    对角线互相垂直的四边形叫做垂美四边形

    股定理计算的工具,识别环境对同学们来说至关重要如果能够了解模型背后的结论,做题可以节省大量的时间。等直角三角形的手拉手全等模型容易出现垂美四边形

    一、    直角三角形锐角平分线

    一.选择题(共1小题)

    1.(2021春•德保县期中)如图所示,有一块直角三角形纸片,∠C90°,AC12cmBC9cm,将斜边AB翻折使点B落在直角边AC的延长线上的点E处,折痕为AD,则CD的长为(  )

    A3cm B4cm C5cm D

    二.填空题(共2小题)

    2.(2021秋•鹿城区校级期中)△ABC中,ABAC5BC8BDAC边的高线,则BD的长为      

    3.(2021秋•陵城区期中)如图,在△ABC中,∠C90°,DEABD,交AC于点E,若BCBDAC6cmBC8cmAB10cm,则△ADE的周长是     

    三.解答题(共5小题)

    4.(2022春•锦江区校级月考)如图,在△ABC中,∠C90°,∠BAC2BDBC上一点,过点DDEAB,垂足为E,连接AD,若CDDE1,求AB的长.

     

    5.(2022秋•胶州市校级月考)如图,在RtABC中,∠B90°,AB7cmAC25cm.点P从点A出发沿AB方向以1cm/s的速度向终点B运动,点Q从点B出发沿BC方向以6cm/s的速度向终点C运动,PQ两点同时出发,设点P的运动时间为t秒.

    1)求BC的长;

    2)当t2时,求PQ两点之间的距离;

    3)当APCQ时,求t的值?

     

    6.(2021春•阳谷县月考)如图,有一块直角三角形纸片,两直角边AC6cmBC8cm,现将直角边AC沿直线AD折叠,使点C落在斜边AB上的点E处,试求CD的长.

     

    7.(2021春•蒙阴县期中)小宇手里有一张直角三角形纸片ABC,他无意中将直角边AC折叠了一下,恰好使AC落在斜边AB上,且C点与E点重合,小宇经过测量得知两直角边AC6cmBC8cm,他想用所学知识求出CD的长,你能帮他吗?

     

     

     

    8.(2020秋•临漳县期中)如图,RtABC中,∠B90°,AB3BC4,将△ABC折叠,使点B恰好落在斜边AC上,与点B′重合,AD为折痕,求DB′的长.

     

     

     

     

     

    二、    形翻折问题

    一.选择题(共4小题)

    1.(2022春•金坛区期中)如图,在矩形ABCD中,AB10BC6.点E是边BC上一点,沿AE翻折△ABE,点B恰好落在CD边上点F处,则CE的长是(  )

    A B C D3

    2.(2022春•宁波期中)如图,将平行四边形ABCD沿对边上两点连线EF对折,使点A恰好落在点C处,若∠ABC120°,AD4AB8,则AE的长为(  )

    A4.6 B4 C5.6 D5

    3.(2022春•思明区校级期中)如图,将正方形ABCD分别沿BEBG折叠,使边ABBCBF处重合,折痕为BEBG.若正方形ABCD的边长为6EAD边的中点,则CG的长是(  )

    A3 B2.5 C2 D1

    4.(2022春•如皋市期中)如图,将矩形纸片ABCD折叠(ADAB),使AB落在AD上,AE为折痕,然后将矩形纸片展开铺在一个平面上,E点不动,将BE边折起,使点B落在AE上的点G处,连接DE,若DEEFCE1,则AD的长为(  )

    A1+ B2+ C2 D4

    二.填空题(共3小题)

    5.(2022春•禹州市期中)如图,在RtABC中,∠BAC90°,AB2AC6,点E在线段AC上,D是线段BC上的一点,连接DE,将四边形ABDE沿直线DE翻折,得到四边形FCDE,当点G恰好落在线段AC上时,CG2,则AE     

     

    6.(2022春•思明区校级期中)如图,在矩形ABCD中,AB4BC3EAB上一点,连接DE,将△ADE沿DE折叠,点A落在A1处,连接A1C,若FG分别为A1CBC的中点,则FG的最小值为      

    7.(2022春•雨花区校级月考)如图,在矩形ABCD中,AB6BC18,把矩形折叠,使点D与点B重合,点C落在点E处,则折痕FG的长为      

    三.解答题(共4小题)

    8.(2022春•西华县期中)如图,一张矩形硬片ABCDAB6,长AD10ECD边上一点,现将矩形硬片沿BE折叠,点C的对应点F刚好落在AD边上的点F处,过点FFGAD于点F,交BE于点G,连接CG

    1)判断四边形CEFG的形状,并给出证明;

    2)求四边形CEFG的面积.

     

     

     

     

     

    9.(2022春•上杭县期中)如图将边长为4的正方形纸片ABCD折叠,使B点落在CD边上一点E,压平后得到折痕MN,当

    1)求NE的长;

    2)连ANAENGAE,垂足为G,求GN的长;

    3)直接写出AM的长度.

     

     

     

    10.(2022春•靖江市期中)在矩形ABCD中,AB6BC8,点E是射线BC上一个动点,连接AE并延长交射线DC于点F,将△ABE沿直线AE翻折到△AB'E,延长AB'与直线CD交于点M

    1)求证:AMMF

    2)当点E是边BC的中点时,求CM的长;

    3)当CF4时,求CM的长.

     

    11.(2022春•海陵区期中)在四边形ABCD中,∠A=∠B=∠C=∠D90°,ABCD10BCAD6P为射线BC上一点,将△ABP沿直线AP翻折至△AEP的位置,使点B落在点E处.

    1)若PBC上一点.

    如图1,当点E落在边CD上时,求CE的长;

    如图2,连接CE,若CEAP,则BPBC有何数量关系?请说明理由;

    2)如果点PBC的延长线上,当△PEC为直角三角形时,求PB的长.

     

     

     

     

     

     

     

     

     

     

     

     

     

     

    三、    赵爽弦图

    一.选择题(共4小题)

    1.(2022春•番禺区期末)如图,正方形内的数字代表所在正方形的面积,则A所在的正方形的面积为(  )

    A B28 C128 D100

    2.(2021春•丰南区期中)如图是我国古代著名的“赵爽弦图”的示意图,此图是由四个全等的直角三角形拼接而成,其中AE10BE24,则EF的长是(  )

    A14 B16 C14 D14

    3.(2019秋•锦州期末)如图是由“赵爽弦图”变化得到的,它由八个全等的直角三角形拼接而成,记图中正方形ABCD、正方形EFGH、正方形MNPQ的面积分别为S1S2S3.若S1+S2+S360,则S2的值是(  )

    A12 B15 C20 D30

     

    4.(2022春•南浔区期末)赵爽弦图由四个全等的直角三角形所组成,形成一个大正方形,中间是一个小正方形(如图所示).某次课后服务拓展学习上,小浔绘制了一幅赵爽弦图,她将EG延长交CD于点I.记小正方形EFGH的面积为S1,大正方形ABCD的面积为S2,若DI2CI1S25S1,则GI的值是(  )

    A B C D

    二.填空题(共2小题)

    5.(2022春•长沙期末)用三张正方形纸片,按如图所示的方式构成图案,已知围成阴影部分的三角形是直角三角形,S19S325,则正方形S2的面积为      

    6.(2022春•丰台区期末)如图1,四个全等的直角三角形围成一个大正方形,中间是一个小正方形,这个图形是我国汉代赵爽在注解《周髀算经》时给出的,人们称它为“赵爽弦图”.连接四条线段得到如图2的新的图案,如果图1中的直角三角形的长直角边为5,短直角边为3,图2中阴影部分的面积为S,那S的值为      

     

     

    三.解答题(共3小题)

    7.(2020春•赣州期末)图1是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的.若AC6BC5,将四个直角三角形中边长为6的直角边分别向外延长一倍,得到图2所示的“数学风车”,则这个风车的外围周长是多少?

     

     

     

    8.(2021春•利辛县期中)如图,小明用4个图1中的矩形组成图2,其中四边形ABCDEFGHMNPQ都是正方形,证明:a2+b2c2

     

     

     

     

     

    9.(2021秋•凤翔县期中)如图1是著名的赵爽弦图,由四个全等的直角三角形拼成,用它可以证明勾股定理,思路是:大正方形的面积有两种求法,一种是等于c2,另一种是等于四个直角三角形与一个小正方形的面积之和,即,从而得到等式c2,化简便得结论a2+b2c2.这里用两种求法来表示同一个量从而得到等式或方程的方法,我们称之为“双求法”.现在,请你用“双求法”解决下面两个问题

    1)如图2,在RtABC中,∠ACB90°,CDAB边上的高,AC3BC4,求CD的长度.

    2)如图3,在△ABC中,ADBC边上的高,AB4AC5BC6,设BDx,求x的值.

     

     

     

     

    四、    风吹树折

    一.选择题(共1小题)

    1.(2022春•微山县月考)在一块平地上,张大爷家屋前9米远处有一棵大树.在一次强风中,这棵大树从离地面6米处折断倒下,量得倒下部分的长是10米.出门在外的张大爷担心自己的房子被倒下的大树砸到.大树倒下时能砸到张大爷的房子吗?请你通过计算、分析后给出正确的回答(  )

    A.一定不会 B.可能会 

    C.一定会 D.以上答案都不对

    二.填空题(共2小题)

    2.(2022秋•东方期末)如图,一旗杆离地面6m处折断,旗杆顶部落在离旗杆底部8m处,旗杆折断之前的高度是      m

    3.(2022春•抚顺期中)如图,今年的冰雪灾害中,一棵大树在离地面3米处折断,树的顶端落在离树杆底部4米处,那么这棵树折断之前的高度是      米.

    三.解答题(共2小题)

    4.(2022春•十堰月考)《九章算术》是我国古代最重要的数学著作之一其中记载了这样一个问题:“今有立木,系索其末,委地三尺,引索却行,去本八尺而索尽,问索长几何?”译文:今有一竖立着的木柱,在木柱的上端系有绳索,绳索从木柱上端顺木柱下垂后,堆在地面的部分尚有3尺.牵着绳索(绳索头与地面接触)退行,在距木柱根部8尺处时绳索用尽.问绳索长是多少尺?

    5.(2022春•原州区校级月考)一旗杆离地面6m处折断,旗杆顶部落在离旗杆底部8m处,旗杆折断之前有多高?

     

     

     

     

    五、    风吹荷花模型

    一.填空题(共2小题)

    1.(2021秋•未央区校级期末)如图,一架梯子AB10米,底端离墙的距离BC6米,当梯子下滑到DE时,AD2米,则BE     米.

    2.(2022春•邹城市校级月考)如图,一个池塘,其底面是边长为10尺的正方形,一棵芦苇AB生长在它的中央,高出水面的部分BC1尺,如果把这根芦苇沿与水池边垂直的方向拉向岸边,芦苇的顶端与岸齐,则芦苇高度是      尺.

    二.解答题(共3小题)

    3.(2021秋•莱芜区期末)如图,有一个水池,水面是一个边长为16尺的正方形,在水池正中央有一根芦苇,它高出水面2尺,如果把这根芦苇拉向水池一边,它的顶端恰好到达池边的水面,则水池里水的深度是多少尺?请你用所学知识解答这个问题.

     

     

    4.(2021秋•邓州市期末)如图,有一架秋千,当它静止时,踏板离地的垂直高度DE1m,将它往前推送4m(水平距离BC4m)时,秋千的踏板离地的垂直高度BF2m,秋千的绳索始终拉得很直,求绳索AD的长度.

    5.(2022春•五华区校级期中)印度数学家什迦逻(1141年﹣1225年)曾提出过“荷花问题”:

    “平平湖水清可鉴,面上半尺生红莲;

    出泥不染亭亭立,忽被强风吹一边,

    渔人观看忙向前,花离原位二尺远;

    能算诸君请解题,湖水如何知深浅”

    请用学过的数学知识回答这个问题.

     

     

     

     

     

     

     

     

     

    六、    378578模型

    一.选择题(共2小题)

    1.(2022春•丛台区月考)已知直角三角形的两直角边分别为68,则该直角三角形斜边上的高为(  )

    A B10 C5 D

    2.(2022春•无棣县期末)与化为最简二次根式后结果相同的是(  )

    A 

    B 

    C.边长为3的等边三角形的高 

    D

    七、    蚂蚁爬行

    一.选择题(共2小题)

    1.(2022•镜湖区校级开学)如图,长方体的长为15,宽为10,高为20,点B离点C的距离为5,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短距离是(  )

    A5 B25 C10+5 D35

    2.(2022春•璧山区期中)如图,一圆柱体的底面周长为10cm,高AB12cmBC是直径,一只蚂蚁从点A出发沿着圆柱的表面爬行到点C的最短路程为(  )

    A17cm B13cm C12cm D14cm

     

    二.填空题(共2小题)

    3.(2022春•凉州区期末)如图一只蚂蚁从长为5cm、宽为3cm,高是4cm的长方体纸箱的A点沿纸箱爬到B点,那么它所爬行的最短路线的长是     cm

    4.(2022春•邹城市校级月考)如图,学校有一块长方形花圃,有极少数人为了避开拐角走“捷径”,在花圃内走出了一条“路”,踩伤了花草,则他们仅仅少走了      步路.(假设2步为1米)

    八、    重美四边形

    一.选择题(共1小题)

    1.(2022春•万秀区校级期中)如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中SA4SBSC2SD1,则下列结论错误的是(  )

    ASE6 BSF3 CSM3SF DSM4SC

     

     

     

     

    二.解答题(共6小题)

    2.(2022春•鼓楼区校级期中)四边形ABCD如图所示,已知ABBCAB3BC6AD7CD2

    1)求证:ACCD

    2)求四边形ABCD的面积.

    3.(2022春•海珠区校级期中)定义,我们把对角线互相垂直的四边形叫做垂美四边形.

    概念理解:如图,在四边形ABCD中,如果ABADCBCD,那么四边形ABCD是垂美四边形吗?请说明理由.

    性质探究:如图,垂美四边形ABCD两组对边ABCDBCAD之间有怎样的数量关系?写出你的猜想,并给出证明.

    问题解决:如图,分别以RtACB的直角边AC和斜边AB为边向外作正方形ACFG和正方形ABDE,连接CEBGGE.若AC2AB5,则

    求证:△AGB≌△ACE

    GE     

     

     

     

     

     

    4.(2021秋•随县期末)如图1,对角线互相垂直的四边形叫做垂美四边形.

    1)概念理解:如图2,在四边形ABCD中,ABADCBCD,问四边形ABCD是垂美四边形吗?请说明理由;

    2)性质探究:如图1,四边形ABCD的对角线ACBD交于点OACBD.试证明:AB2+CD2AD2+BC2

    3)解决问题:如图3,分别以RtACB的直角边AC和斜边AB为边向外作正方形ACFG和正方形ABDE,连接CEBGGE.已知AC4AB5,求GE的长.

     

     

     

     

    5.(2022春•海安市月考)如图1,我们把对角线相互垂直的四边形叫做垂美四边形.

    1)概念理解,在四边形ABCD中,以下是垂美四边形的是      

    平行四边形;矩形;菱形;ABADCBCD

    2)性质探究,小美同学猜想“垂美四边形两组对边的平方和相等”,即,如图1,在四边形ABCD中,若ACBD,则AB2+CD2AD2+BC2.请判断小美同学的猜想是否正确,并说明理由.

    3)问题解决:如图2.在△ABC中,BC3AC4DE分别是ACBC的中点,连接AEBD.有AEBD,求AB

    6.(2022春•建平县期末)[定义]有一组对角是直角的四边形是垂美四边形.

    [理解]如图,将一对相同的直角三角尺按如图所示的方式拼成四边形ABCD,每个三角尺三个内角的度数都是30°、60°和90°.四边形ABCD      四边形,∠ABC+ADC     度;

    [探究]如图,四边形ABCD是垂美四边形.∠A90°.∠B80°,E是边AD延长线上一点,求∠C和∠CDE的度数.

    [应用]如图,四边形ABCD是垂美四边形,∠A90°,BEDF分别是∠ABC和∠ADC的平分线,交ADBC于点EF.试说明BEDF

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

    7.(2022春•浉河区校级期末)如图1,我们把对角线互相垂直的四边形叫做垂美四边形.

    1)概念理解:如图2,在四边形ABCD中,ABADCBCD,问四边形ABCD是垂美四边形吗?请说明理由.

    2)性质探究:试探索垂美四边形ABCD两组对边ABCDBCAD之间的数量关系.

    猜想结论:(要求用文字语言叙述)      

    写出证明过程(先画出图形,写出已知、求证).

    3)问题解决:如图3,分别以RtACB的直角边AC和斜边AB为边向外作正方形ACFG和正方形ABDE,连接CEBGGE,已知AC4AB5,求GE长.

     


     

    相关试卷

    2022-2023年北师大版数学八年级下册专项复习精讲精练:专题06勾股定理七大模型(原卷版+解析版): 这是一份2022-2023年北师大版数学八年级下册专项复习精讲精练:专题06勾股定理七大模型(原卷版+解析版),文件包含2022-2023年北师大版数学八年级下册专项复习精讲精练专题06勾股定理七大模型解析版docx、2022-2023年北师大版数学八年级下册专项复习精讲精练专题06勾股定理七大模型原卷版docx等2份试卷配套教学资源,其中试卷共43页, 欢迎下载使用。

    2022-2023年苏科版数学七年级下册专项复习精讲精练:专题03 幂的运算(原卷版 解析版): 这是一份2022-2023年苏科版数学七年级下册专项复习精讲精练:专题03 幂的运算(原卷版 解析版),文件包含专题03幂的运算解析版docx、专题03幂的运算原卷版docx等2份试卷配套教学资源,其中试卷共51页, 欢迎下载使用。

    2022-2023年苏科版数学七年级下册专项复习精讲精练:专题03 幂的运算(原卷版 解析版): 这是一份2022-2023年苏科版数学七年级下册专项复习精讲精练:专题03 幂的运算(原卷版 解析版),文件包含专题03幂的运算解析版docx、专题03幂的运算原卷版docx等2份试卷配套教学资源,其中试卷共51页, 欢迎下载使用。

    • 精品推荐
    • 所属专辑

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        2022-2023年人教版数学八年级下册专项复习精讲精练:专题03勾股定理八大模型(原卷版+解析版)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map