年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    高考数学真题专题训练 15三角函数与解三角形综合(含解析)

    高考数学真题专题训练  15三角函数与解三角形综合(含解析)第1页
    高考数学真题专题训练  15三角函数与解三角形综合(含解析)第2页
    高考数学真题专题训练  15三角函数与解三角形综合(含解析)第3页
    还剩23页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    高考数学真题专题训练 15三角函数与解三角形综合(含解析)

    展开

    这是一份高考数学真题专题训练 15三角函数与解三角形综合(含解析),共26页。试卷主要包含了在中,角所对的边分别为.已知.,【高考四川理数】等内容,欢迎下载使用。
    1.(新课标Ⅱ)中,sin2A-sin2B-sin2C=sinBsinC.
    (1)求A;
    (2)若BC=3,求周长的最大值.
    【答案】(1);(2).
    【解析】
    (1)由正弦定理可得:,

    ,.
    (2)由余弦定理得:,
    即.
    (当且仅当时取等号),

    解得:(当且仅当时取等号),
    周长,周长的最大值为.
    【点睛】本题考查解三角形的相关知识,涉及到正弦定理角化边的应用、余弦定理的应用、三角形周长最大值的求解问题;求解周长最大值的关键是能够在余弦定理构造的等式中,结合基本不等式构造不等关系求得最值.
    2.(北京卷)在中,,再从条件①、条件②这两个条件中选择一个作为己知,求:
    (Ⅰ)a的值:
    (Ⅱ)和的面积.
    条件①:;
    条件②:.
    注:如果选择条件①和条件②分别解答,按第一个解答计分.
    【答案】选择条件①(Ⅰ)8(Ⅱ), ;
    选择条件②(Ⅰ)6(Ⅱ), .
    【解析】选择条件①(Ⅰ)
    (Ⅱ)
    由正弦定理得:
    选择条件②(Ⅰ)
    由正弦定理得:
    (Ⅱ)
    【点睛】本题考查正弦定理、余弦定理,三角形面积公式,考查基本分析求解能力,属中档题.
    3.(山东卷)在①,②,③这三个条件中任选一个,补充在下面问题中,若问题中的三角形存在,求的值;若问题中的三角形不存在,说明理由.
    问题:是否存在,它的内角的对边分别为,且,,________?
    注:如果选择多个条件分别解答,按第一个解答计分.
    【答案】详见解析
    【解析】解法一:
    由可得:,
    不妨设,
    则:,即.
    选择条件①的解析:
    据此可得:,,此时.
    选择条件②的解析:
    据此可得:,
    则:,此时:,则:.
    选择条件③的解析:
    可得,,
    与条件矛盾,则问题中的三角形不存在.
    解法二:∵,
    ∴,

    ∴,∴,∴,∴,
    若选①,,∵,∴,∴c=1;
    若选②,,则,;
    若选③,与条件矛盾.
    【点睛】在处理三角形中的边角关系时,一般全部化为角的关系,或全部化为边的关系.题中若出现边的一次式一般采用到正弦定理,出现边的二次式一般采用到余弦定理.应用正、余弦定理时,注意公式变式的应用.解决三角形问题时,注意角的限制范围.
    4.(天津卷)在中,角所对的边分别为.已知.
    (Ⅰ)求角的大小;
    (Ⅱ)求的值;
    (Ⅲ)求的值.
    【答案】(Ⅰ);(Ⅱ);(Ⅲ).
    【解析】
    (Ⅰ)在中,由及余弦定理得

    又因为,所以;
    (Ⅱ)在中,由,及正弦定理,可得;
    (Ⅲ)由知角为锐角,由,可得,
    进而,
    所以.
    【点晴】本题主要考查正、余弦定理解三角形,以及三角恒等变换在解三角形中的应用,考查学生的数学运算能力,是一道容易题.
    5.(浙江卷)在锐角△ABC中,角A,B,C的对边分别为a,b,c,且.
    (I)求角B;
    (II)求csA+csB+csC的取值范围.
    【答案】(I);(II)
    【解析】
    (I)由结合正弦定理可得:
    △ABC为锐角三角形,故.
    (II)结合(1)的结论有:
    .
    由可得:,,
    则,.
    即的取值范围是.
    1.【高考全国Ⅰ卷】的内角A,B,C的对边分别为a,b,c,设.
    (1)求A;
    (2)若,求sinC.
    【答案】(1);(2).
    【解析】(1)由已知得,故由正弦定理得.
    由余弦定理得.
    因为,所以.
    (2)由(1)知,由题设及正弦定理得,
    即,可得.
    由于,所以,故

    2.【高考全国Ⅲ卷】△ABC的内角A,B,C的对边分别为a,b,c,已知.
    (1)求B;
    (2)若△ABC为锐角三角形,且c=1,求△ABC面积的取值范围.
    【答案】(1)B=60°;(2).
    【解析】(1)由题设及正弦定理得.
    因为sinA0,所以.
    由,可得,故.
    因为,故,因此B=60°.
    (2)由题设及(1)知△ABC的面积.
    由正弦定理得.
    由于△ABC为锐角三角形,故0°

    相关试卷

    2011-2020年高考数学真题分专题训练 专题14 解三角形(含解析):

    这是一份2011-2020年高考数学真题分专题训练 专题14 解三角形(含解析),共46页。

    高考数学真题专题训练 14数列综合(含解析):

    这是一份高考数学真题专题训练 14数列综合(含解析),共27页。试卷主要包含了设数列{an}满足a1=3,.,已知是无穷数列.给出两个性质,已知公比大于的等比数列满足.,已知为等差数列,为等比数列,.等内容,欢迎下载使用。

    高考数学真题专题训练 16概率与统计综合(含解析):

    这是一份高考数学真题专题训练 16概率与统计综合(含解析),共35页。试卷主要包含了01);,,得下表,5×9=256,25等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map