|试卷下载
终身会员
搜索
    上传资料 赚现金
    高考数学真题专题训练 18解析几何综合(含解析)
    立即下载
    加入资料篮
    高考数学真题专题训练  18解析几何综合(含解析)01
    高考数学真题专题训练  18解析几何综合(含解析)02
    高考数学真题专题训练  18解析几何综合(含解析)03
    还剩54页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    高考数学真题专题训练 18解析几何综合(含解析)

    展开
    这是一份高考数学真题专题训练 18解析几何综合(含解析),共57页。试卷主要包含了已知椭圆C1,已知椭圆过点,且.等内容,欢迎下载使用。

    1.(新课标Ⅰ)已知A、B分别为椭圆E:(a>1)的左、右顶点,G为E的上顶点,,P为直线x=6上的动点,PA与E的另一交点为C,PB与E的另一交点为D.
    (1)求E的方程;
    (2)证明:直线CD过定点.
    【答案】(1);(2)证明详见解析.
    【解析】
    (1)依据题意作出如下图象:
    由椭圆方程可得:, ,


    椭圆方程为:
    (2)证明:设,
    则直线AP的方程为:,即:
    联立直线AP的方程与椭圆方程可得:,整理得:
    ,解得:或
    将代入直线可得:
    所以点C的坐标为.
    同理可得:点D的坐标为
    直线CD的方程为:,
    整理可得:
    整理得:
    故直线CD过定点
    【点睛】本题主要考查了椭圆的简单性质及方程思想,还考查了计算能力及转化思想、推理论证能力,属于难题.
    2.(新课标Ⅱ)已知椭圆C1:(a>b>0)的右焦点F与抛物线C2的焦点重合,C1的中心与C2的顶点重合.过F且与x轴垂直的直线交C1于A,B两点,交C2于C,D两点,且|CD|=|AB|.
    (1)求C1的离心率;
    (2)设M是C1与C2的公共点,若|MF|=5,求C1与C2的标准方程.
    【答案】(1);(2),.
    【解析】
    (1),轴且与椭圆相交于、两点,
    则直线的方程为,
    联立,解得,则,
    抛物线的方程为,联立,
    解得,,
    ,即,,
    即,即,
    ,解得,因此,椭圆的离心率为;
    (2)由(1)知,,椭圆的方程为,
    联立,消去并整理得,
    解得或(舍去),
    由抛物线的定义可得,解得.
    因此,曲线的标准方程为,
    曲线的标准方程为.
    【点睛】本题考查椭圆离心率的求解,同时也考查了利用抛物线的定义求抛物线和椭圆的标准方程,考查计算能力,属于中等题.
    3.(新课标Ⅲ)已知椭圆的离心率为,,分别为的左、右顶点.
    (1)求C的方程;
    (2)若点P在C上,点Q在直线上,且,,求的面积.
    【答案】(1);(2).
    【解析】
    (1)
    ,,
    根据离心率,
    解得或(舍),
    的方程为:,
    即;
    (2)点P在C上,点Q在直线上,且,,
    过点P作轴垂线,交点为M,设与轴交点为N
    根据题意画出图形,如图
    ,,,
    又,,

    根据三角形全等条件“”,
    可得:,



    设P点为,
    可得P点纵坐标为,将其代入,
    可得:,
    解得:或,
    点为或,
    ①当点为时,
    故,


    可得:Q点为,
    画出图象,如图
    ,,
    可求得直线AQ的直线方程为:,
    根据点到直线距离公式可得P到直线AQ的距离为:,
    根据两点间距离公式可得:,
    面积为:;
    ②当P点时,
    故,


    可得:Q点为,
    画出图象,如图
    ,,
    可求得直线AQ的直线方程为:,
    根据点到直线距离公式可得P到直线AQ的距离为:,
    根据两点间距离公式可得:,
    面积为:,
    综上所述,面积为:.
    【点睛】本题主要考查了求椭圆标准方程和求三角形面积问题,解题关键是掌握椭圆的离心率定义和数形结合求三角形面积,考查了分析能力和计算能力,属于中档题.
    4.(北京卷)已知椭圆过点,且.
    (Ⅰ)求椭圆C的方程:
    (Ⅱ)过点的直线l交椭圆C于点,直线分别交直线于点.求的值.
    【答案】(Ⅰ);(Ⅱ)1.
    【解析】
    (1)设椭圆方程为:,由题意可得:
    ,解得:,
    故椭圆方程为:.
    (2)设,,直线的方程为:,
    与椭圆方程联立可得:,
    即:,
    则:.
    直线MA的方程为:,
    令可得:,
    同理可得:.
    很明显,且:,注意到:

    而:

    故.
    从而.
    【点睛】解决直线与椭圆的综合问题时,要注意:
    (1)注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;
    (2)强化有关直线与椭圆联立得出一元二次方程后运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.
    5.(江苏卷)在△ABC中,角A,B,C的对边分别为a,b,c,已知.
    (1)求的值;
    (2)在边BC上取一点D,使得,求的值.
    【答案】(1);(2).
    【解析】
    (1)由余弦定理得,所以.
    由正弦定理得.
    (2)由于,,所以.
    由于,所以,所以
    所以
    .
    由于,所以.
    所以.
    【点睛】本小题主要考查正弦定理、余弦定理解三角形,考查三角恒等变换,属于中档题.
    6.(江苏卷)在平面直角坐标系xOy中,已知椭圆的左、右焦点分别为F1,F2,点A在椭圆E上且在第一象限内,AF2⊥F1F2,直线AF1与椭圆E相交于另一点B.
    (1)求△AF1F2的周长;
    (2)在x轴上任取一点P,直线AP与椭圆E的右准线相交于点Q,求的最小值;
    (3)设点M在椭圆E上,记△OAB与△MAB的面积分别为S1,S2,若S2=3S1,求点M的坐标.
    【答案】(1)6;(2)-4;(3)或.
    【解析】
    (1)∵椭圆的方程为
    ∴,
    由椭圆定义可得:.
    ∴的周长为
    (2)设,根据题意可得.
    ∵点在椭圆上,且在第一象限,

    ∵准线方程为

    ∴,当且仅当时取等号.
    ∴的最小值为.
    (3)设,点到直线的距离为.
    ∵,
    ∴直线的方程为
    ∵点到直线的距离为,


    ∴①
    ∵②
    ∴联立①②解得,.
    ∴或.
    【点睛】本题考查了椭圆的定义,直线与椭圆相交问题、点到直线距离公式的运用,熟悉运用公式以及根据推出是解答本题的关键.
    7.(山东卷)已知椭圆C:过点M(2,3),点A为其左顶点,且AM的斜率为 ,
    (1)求C的方程;
    (2)点N为椭圆上任意一点,求△AMN的面积的最大值.
    【答案】(1);(2)12.
    【解析】
    (1)由题意可知直线AM的方程为:,即.
    当y=0时,解得,所以a=4,
    椭圆过点M(2,3),可得,
    解得b2=12.
    所以C的方程:.
    (2)设与直线AM平行的直线方程为:,
    如图所示,当直线与椭圆相切时,与AM距离比较远的直线与椭圆的切点为N,此时△AMN的面积取得最大值.
    联立直线方程与椭圆方程,
    可得:,
    化简可得:,
    所以,即m2=64,解得m=±8,
    与AM距离比较远的直线方程:,
    直线AM方程为:,
    点N到直线AM的距离即两平行线之间的距离,
    利用平行线之间的距离公式可得:,
    由两点之间距离公式可得.
    所以△AMN的面积的最大值:.
    【点睛】解决直线与椭圆的综合问题时,要注意:
    (1)注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;
    (2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.
    8.(天津卷)已知椭圆的一个顶点为,右焦点为,且,其中为原点.
    (Ⅰ)求椭圆方程;
    (Ⅱ)已知点满足,点在椭圆上(异于椭圆的顶点),直线与以为圆心的圆相切于点,且为线段的中点.求直线的方程.
    【答案】(Ⅰ);(Ⅱ),或.
    【解析】
    (Ⅰ)椭圆的一个顶点为,

    由,得,
    又由,得,
    所以,椭圆的方程为;
    (Ⅱ)直线与以为圆心的圆相切于点,所以,
    根据题意可知,直线和直线的斜率均存在,
    设直线的斜率为,则直线的方程为,即,
    ,消去,可得,解得或.
    将代入,得,
    所以,点的坐标为,
    因为为线段的中点,点的坐标为,
    所以点的坐标为,
    由,得点的坐标为,
    所以,直线的斜率为,
    又因为,所以,
    整理得,解得或.
    所以,直线的方程为或.
    【点睛】本题考查了椭圆标准方程的求解、直线与椭圆的位置关系、直线与圆的位置关系、中点坐标公式以及直线垂直关系的应用,考查学生的运算求解能力,属于中档题.当看到题目中出现直线与圆锥曲线位置关系的问题时,要想到联立直线与圆锥曲线的方程.
    9.(浙江卷)如图,已知椭圆,抛物线,点A是椭圆与抛物线的交点,过点A的直线l交椭圆于点B,交抛物线于M(B,M不同于A).
    (Ⅰ)若,求抛物线的焦点坐标;
    (Ⅱ)若存在不过原点的直线l使M为线段AB的中点,求p的最大值.
    【答案】(Ⅰ);(Ⅱ)
    【解析】
    (Ⅰ)当时,的方程为,故抛物线的焦点坐标为;
    (Ⅱ)设,
    由,

    由在抛物线上,所以,
    又,
    ,,
    .
    由即

    所以,,,
    所以,的最大值为,此时.
    法2:设直线,.
    将直线的方程代入椭圆得:,
    所以点的纵坐标为.
    将直线的方程代入抛物线得:,
    所以,解得,因此,
    由解得,
    所以当时,取到最大值为.
    12.【高考全国Ⅱ卷】如图,长方体ABCD–A1B1C1D1的底面ABCD是正方形,点E在棱AA1上,BE⊥EC1.
    (1)证明:BE⊥平面EB1C1;
    (2)若AE=A1E,求二面角B–EC–C1的正弦值.
    【答案】(1)证明见解析;(2).
    【解析】(1)由已知得,平面,平面,
    故.
    又,所以平面.
    (2)由(1)知.由题设知≌,所以,
    故,.
    以为坐标原点,的方向为x轴正方向,为单位长,建立如图所示的空间直角坐标系D–xyz,
    则C(0,1,0),B(1,1,0),(0,1,2),E(1,0,1),,,.
    设平面EBC的法向量为n=(x,y,x),则

    所以可取n=.
    设平面的法向量为m=(x,y,z),则

    所以可取m=(1,1,0).
    于是.
    所以,二面角的正弦值为.
    13.【高考全国Ⅲ卷】图1是由矩形ADEB,Rt△ABC和菱形BFGC组成的一个平面图形,其中AB=1,BE=BF=2,∠FBC=60°,将其沿AB,BC折起使得BE与BF重合,连结DG,如图2.
    (1)证明:图2中的A,C,G,D四点共面,且平面ABC⊥平面BCGE;
    (2)求图2中的二面角B−CG−A的大小.
    【答案】(1)见解析;(2).
    【解析】(1)由已知得ADBE,CGBE,所以ADCG,故AD,CG确定一个平面,从而A,C,G,D四点共面.
    由已知得ABBE,ABBC,故AB平面BCGE.
    又因为AB平面ABC,所以平面ABC平面BCGE.
    (2)作EHBC,垂足为H.因为EH平面BCGE,平面BCGE平面ABC,所以EH平面ABC.
    由已知,菱形BCGE的边长为2,∠EBC=60°,可求得BH=1,EH=.
    以H为坐标原点,的方向为x轴的正方向,建立如图所示的空间直角坐标系H–xyz,
    则A(–1,1,0),C(1,0,0),G(2,0,),=(1,0,),=(2,–1,0).
    设平面ACGD的法向量为n=(x,y,z),则

    所以可取n=(3,6,–).
    又平面BCGE的法向量可取为m=(0,1,0),所以.
    因此二面角B–CG–A的大小为30°.
    14.【高考北京卷】如图,在四棱锥P–ABCD中,PA⊥平面ABCD,AD⊥CD,AD∥BC,PA=AD=CD=2,BC=3.E为PD的中点,点F在PC上,且.
    (1)求证:CD⊥平面PAD;
    (2)求二面角F–AE–P的余弦值;
    (3)设点G在PB上,且.判断直线AG是否在平面AEF内,说明理由.
    【答案】(1)见解析;(2);(3)见解析.
    【解析】(1)因为PA⊥平面ABCD,所以PA⊥CD.
    又因为AD⊥CD,所以CD⊥平面PAD.
    (2)过A作AD的垂线交BC于点M.
    因为PA⊥平面ABCD,所以PA⊥AM,PA⊥AD.
    如图建立空间直角坐标系A−xyz,则A(0,0,0),B(2,1,0),C(2,2,0),D(0,2,0),P(0,0,2).
    因为E为PD的中点,所以E(0,1,1).
    所以.
    所以.
    设平面AEF的法向量为n=(x,y,z),则

    令z=1,则.
    于是.
    又因为平面PAD的法向量为p=(1,0,0),所以.
    由题知,二面角F−AE−P为锐角,所以其余弦值为.
    (3)直线AG在平面AEF内.
    因为点G在PB上,且,
    所以.
    由(2)知,平面AEF的法向量.
    所以.
    所以直线AG在平面AEF内.
    15.【高考天津卷】如图,平面,,.
    (1)求证:平面;
    (2)求直线与平面所成角的正弦值;
    (3)若二面角的余弦值为,求线段的长.
    【答案】(1)见解析;(2);(3).
    【解析】依题意,可以建立以为原点,分别以的方向为轴,轴,轴正方向的空间直角坐标系(如图),可得,.设,则.
    (1)依题意,是平面的法向量,又,可得,又因为直线平面,所以平面.
    (2)依题意,.
    设为平面的法向量,则即不妨令,
    可得.因此有.
    所以,直线与平面所成角的正弦值为.
    (3)设为平面的法向量,则即
    不妨令,可得.
    由题意,有,解得.经检验,符合题意.
    所以,线段的长为.
    16.【高考江苏卷】如图,在直三棱柱ABC-A1B1C1中,D,E分别为BC,AC的中点,AB=BC.
    求证:(1)A1B1∥平面DEC1;
    (2)BE⊥C1E.
    【答案】(1)见解析;(2)见解析.
    【解析】(1)因为D,E分别为BC,AC的中点,
    所以ED∥AB.
    在直三棱柱ABC−A1B1C1中,AB∥A1B1,
    所以A1B1∥ED.
    又因为ED⊂平面DEC1,A1B1平面DEC1,
    所以A1B1∥平面DEC1.
    (2)因为AB=BC,E为AC的中点,所以BE⊥AC.
    因为三棱柱ABC−A1B1C1是直棱柱,所以CC1⊥平面ABC.
    又因为BE⊂平面ABC,所以CC1⊥BE.
    因为C1C⊂平面A1ACC1,AC⊂平面A1ACC1,C1C∩AC=C,
    所以BE⊥平面A1ACC1.
    因为C1E⊂平面A1ACC1,所以BE⊥C1E.
    17.【高考浙江卷】(本小题满分15分)如图,已知三棱柱,平面平面,,分别是AC,A1B1的中点.
    (1)证明:;
    (2)求直线EF与平面A1BC所成角的余弦值.
    【答案】(1)见解析;(2).
    【解析】方法一:
    (1)连接A1E,因为A1A=A1C,E是AC的中点,所以A1E⊥AC.
    又平面A1ACC1⊥平面ABC,A1E平面A1ACC1,
    平面A1ACC1∩平面ABC=AC,
    所以,A1E⊥平面ABC,则A1E⊥BC.
    又因为A1F∥AB,∠ABC=90°,故BC⊥A1F.
    所以BC⊥平面A1EF.
    因此EF⊥BC.
    (2)取BC中点G,连接EG,GF,则EGFA1是平行四边形.
    由于A1E⊥平面ABC,故A1E⊥EG,所以平行四边形EGFA1为矩形.
    由(1)得BC⊥平面EGFA1,则平面A1BC⊥平面EGFA1,
    所以EF在平面A1BC上的射影在直线A1G上.
    连接A1G交EF于O,则∠EOG是直线EF与平面A1BC所成的角(或其补角).
    不妨设AC=4,则在Rt△A1EG中,A1E=2,EG=.
    由于O为A1G的中点,故,
    所以.
    因此,直线EF与平面A1BC所成角的余弦值是.
    方法二:
    (1)连接A1E,因为A1A=A1C,E是AC的中点,所以A1E⊥AC.
    又平面A1ACC1⊥平面ABC,A1E平面A1ACC1,
    平面A1ACC1∩平面ABC=AC,所以,A1E⊥平面ABC.
    如图,以点E为原点,分别以射线EC,EA1为y,z轴的正半轴,建立空间直角坐标系E–xyz.
    不妨设AC=4,则
    A1(0,0,2),B(,1,0),,,C(0,2,0).
    因此,,.
    由得.
    (2)设直线EF与平面A1BC所成角为θ.
    由(1)可得.
    设平面A1BC的法向量为n,
    由,得,
    取n,故,
    因此,直线EF与平面A1BC所成的角的余弦值为.
    4. (天津卷)设椭圆(a>b>0)的左焦点为F,上顶点为B. 已知椭圆的离心率为,点A的坐标为,且.
    (I)求椭圆的方程;
    (II)设直线l:与椭圆在第一象限的交点为P,且l与直线AB交于点Q. 若(O为原点) ,求k的值.
    【答案】(Ⅰ);(Ⅱ)或
    【解析】(Ⅰ)设椭圆的焦距为2c,由已知有,
    又由a2=b2+c2,可得2a=3b.由已知可得,,,
    由,可得ab=6,从而a=3,b=2.
    所以,椭圆的方程为.
    (Ⅱ)设点P的坐标为(x1,y1),点Q的坐标为(x2,y2).
    由已知有y1>y2>0,故.
    又因为,而∠OAB=,故.
    由,可得5y1=9y2.
    由方程组消去x,可得.
    易知直线AB的方程为x+y–2=0,
    由方程组消去x,可得.
    由5y1=9y2,可得5(k+1)=,
    两边平方,整理得,
    解得,或.
    所以,k的值为或
    5. (江苏卷)如图,在平面直角坐标系中,椭圆C过点,焦点,圆O的直径为.
    (1)求椭圆C及圆O的方程;
    (2)设直线l与圆O相切于第一象限内的点P.
    ①若直线l与椭圆C有且只有一个公共点,求点P的坐标;
    ②直线l与椭圆C交于两点.若的面积为,求直线l的方程.
    【答案】(1)椭圆C的方程为;圆O的方程为
    (2)①点P的坐标为;②直线l的方程为
    【解析】(1)因为椭圆C的焦点为,
    可设椭圆C的方程为.又点在椭圆C上,
    所以,解得
    因此,椭圆C的方程为.
    因为圆O的直径为,所以其方程为.
    (2)①设直线l与圆O相切于,则,
    所以直线l的方程为,即.
    由,消去y,得
    .(*)
    因为直线l与椭圆C有且只有一个公共点,
    所以.
    因为,所以.
    因此,点P的坐标为.
    ②因为三角形OAB的面积为,所以,从而.
    设,
    由(*)得,
    所以

    因为,
    所以,即,
    解得舍去),则,因此P的坐标为.
    综上,直线l的方程为.
    6. (全国I卷理数)设椭圆的右焦点为,过的直线与交于两点,点的坐标为.
    (1)当与轴垂直时,求直线的方程;
    (2)设为坐标原点,证明:.
    【答案】(1) AM的方程为或.
    (2)证明见解析.
    【解析】
    (1)由已知得,l的方程为x=1.
    由已知可得,点A的坐标为或.
    所以AM的方程为或.
    (2)当l与x轴重合时,.
    当l与x轴垂直时,OM为AB的垂直平分线,所以.
    当l与x轴不重合也不垂直时,设l的方程为,,
    则,直线MA,MB的斜率之和为.
    由得
    .
    将代入得
    .
    所以,.
    则.
    从而,故MA,MB的倾斜角互补,所以.
    综上,.
    7. (全国Ⅲ卷理数)已知斜率为的直线与椭圆交于,两点,线段的中点为.
    (1)证明:;
    (2)设为的右焦点,为上一点,且.证明:,,成等差数列,并求该数列的公差.
    【答案】(1)
    (2)或
    【解析】(1)设,则.
    两式相减,并由得
    .
    由题设知,于是
    .①
    由题设得,故.
    (2)由题意得,设,则
    .
    由(1)及题设得.
    又点P在C上,所以,从而,.
    于是
    .
    同理.
    所以.
    故,即成等差数列.
    设该数列的公差为d,则
    .②
    将代入①得.
    所以l的方程为,代入C的方程,并整理得.
    故,代入②解得.
    所以该数列的公差为或.
    抛物线
    1. (全国I卷理数)设抛物线C:y2=4x的焦点为F,过点(–2,0)且斜率为的直线与C交于M,N两点,则=
    A. 5 B. 6 C. 7 D. 8
    【答案】D
    【解析】根据题意,过点(–2,0)且斜率为的直线方程为,与抛物线方程联立,消元整理得:,解得,又,所以,从而可以求得,故选D.
    2. (全国Ⅲ卷理数)已知点和抛物线,过的焦点且斜率为的直线与交于,两点.若,则________.
    【答案】2
    【解析】设

    所以
    所以
    取AB中点,分别过点A,B作准线的垂线,垂足分别为
    因为,

    因为M’为AB中点,
    所以MM’平行于x轴
    因为M(-1,1)
    所以,则即
    故答案为2.
    3. (浙江卷)如图,已知点P是y轴左侧(不含y轴)一点,抛物线C:y2=4x上存在不同的两点A,B满足PA,PB的中点均在C上.
    (Ⅰ)设AB中点为M,证明:PM垂直于y轴;
    (Ⅱ)若P是半椭圆x2+=1(x<0)上的动点,求△PAB面积的取值范围.
    【答案】(Ⅰ)见解析
    (Ⅱ)
    【解析】(Ⅰ)设,,.
    因为,的中点在抛物线上,所以,为方程
    即的两个不同的实数根.
    所以.
    因此,垂直于轴.
    (Ⅱ)由(Ⅰ)可知
    所以,.
    因此,的面积.
    因为,所以.
    因此,面积的取值范围是.
    4. (北京卷)已知抛物线C:=2px经过点(1,2).过点Q(0,1)的直线l与抛物线C有两个不同的交点A,B,且直线PA交y轴于M,直线PB交y轴于N.
    (Ⅰ)求直线l的斜率的取值范围;
    (Ⅱ)设O为原点,,,求证:为定值.
    【答案】(1) 取值范围是(-∞,-3)∪(-3,0)∪(0,1)
    (2)证明过程见解析
    【解析】(Ⅰ)因为抛物线y2=2px经过点P(1,2),
    所以4=2p,解得p=2,所以抛物线的方程为y2=4x.
    由题意可知直线l的斜率存在且不为0,
    设直线l的方程为y=kx+1(k≠0).
    由得.
    依题意,解得k<0或0又PA,PB与y轴相交,故直线l不过点(1,-2).从而k≠-3.
    所以直线l斜率的取值范围是(-∞,-3)∪(-3,0)∪(0,1).
    (Ⅱ)设A(x1,y1),B(x2,y2).
    由(I)知,.
    直线PA的方程为y–2=.
    令x=0,得点M的纵坐标为.
    同理得点N的纵坐标为.
    由,得,.
    所以.
    所以为定值.
    5. (全国Ⅱ卷理数)设抛物线的焦点为,过且斜率为的直线与交于,两点,.
    (1)求的方程;
    (2)求过点,且与的准线相切的圆的方程.
    【答案】(1) y=x–1,(2)或.
    【解析】
    (1)由题意得F(1,0),l的方程为y=k(x–1)(k>0).
    设A(x1,y1),B(x2,y2).
    由得.
    ,故.
    所以.
    由题设知,解得k=–1(舍去),k=1.
    因此l的方程为y=x–1.
    (2)由(1)得AB的中点坐标为(3,2),所以AB的垂直平分线方程为
    ,即.
    设所求圆的圆心坐标为(x0,y0),则
    解得或
    因此所求圆的方程为
    或.
    12.【2017课标1,理20】已知椭圆C:(a>b>0),四点P1(1,1),P2(0,1),P3(–1,),P4(1,)中恰有三点在椭圆C上.
    (1)求C的方程;
    (2)设直线l不经过P2点且与C相交于A,B两点.若直线P2A与直线P2B的斜率的和为–1,证明:l过定点.
    【答案】(1).(2)见解析。
    【解析】(1)由于, 两点关于y轴对称,故由题设知C经过, 两点.
    又由知,C不经过点P1,所以点P2在C上.
    因此,解得.
    故C的方程为.
    (2)设直线P2A与直线P2B的斜率分别为k1,k2,
    如果l与x轴垂直,设l:x=t,由题设知,且,可得A,B的坐标分别为(t, ),(t, ).
    则,得,不符合题设.
    从而可设l: ().将代入得
    由题设可知.
    设A(x1,y1),B(x2,y2),则x1+x2=,x1x2=.

    .
    由题设,故.
    即.
    解得.
    当且仅当时, ,欲使l: ,即,
    所以l过定点(2, )
    13.【2017课标II,理】设O为坐标原点,动点M在椭圆C:上,过M作x轴的垂线,垂足为N,点P满足。
    求点P的轨迹方程;
    (2)设点Q在直线上,且。证明:过点P且垂直于OQ的直线l过C的左焦点F。
    【答案】(1) 。(2)证明略。
    【解析】(1)设P(x,y),M(),则N(),
    由得.
    因为M()在C上,所以.
    因此点P的轨迹为.
    由题意知F(-1,0),设Q(-3,t),P(m,n),则

    .
    由得-3m-+tn-=1,又由(1)知,故
    3+3m-tn=0.
    所以,即.又过点P存在唯一直线垂直于OQ,所以过点P且垂直于OQ的直线l过C的左焦点F.
    14.【2017山东,理21】在平面直角坐标系中,椭圆:的离心率为,焦距为.
    (Ⅰ)求椭圆的方程;
    (Ⅱ)如图,动直线:交椭圆于两点,是椭圆上一点,直线的斜率为,且,是线段延长线上一点,且,的半径为,是的两条切线,切点分别为.求的最大值,并求取得最大值时直线的斜率.
    【答案】(I).
    (Ⅱ)的最大值为,取得最大值时直线的斜率为.
    【解析】
    (I)由题意知 , ,
    所以 ,
    因此 椭圆的方程为.
    (Ⅱ)设,
    联立方程
    得,
    由题意知,
    且,
    所以 .
    由题意可知圆的半径为
    由题设知,
    所以
    因此直线的方程为.
    联立方程
    得,
    因此 .
    由题意可知 ,


    令,
    则,
    因此 ,
    当且仅当,即时等号成立,此时,
    所以 ,
    因此,
    所以 最大值为.
    综上所述: 的最大值为,取得最大值时直线的斜率为.
    15.【2017北京,理18】已知抛物线C:y2=2px过点P(1,1).过点(0,)作直线l与抛物线C交于不同的两点M,N,过点M作x轴的垂线分别与直线OP,ON交于点A,B,其中O为原点.
    (Ⅰ)求抛物线C的方程,并求其焦点坐标和准线方程;
    (Ⅱ)求证:A为线段BM的中点.
    【答案】(Ⅰ)方程为,抛物线C的焦点坐标为(,0),准线方程为.(Ⅱ)详见解析.
    【解析】
    (Ⅰ)由抛物线C: 过点P(1,1),得.
    所以抛物线C的方程为.
    抛物线C的焦点坐标为(,0),准线方程为.
    (Ⅱ)由题意,设直线l的方程为(),l与抛物线C的交点为, .
    由,得.
    则, .
    因为点P的坐标为(1,1),所以直线OP的方程为,点A的坐标为.
    直线ON的方程为,点B的坐标为.
    因为

    所以.
    故A为线段BM的中点.
    16.【2017天津,理19】设椭圆的左焦点为,右顶点为,离心率为.已知是抛物线的焦点,到抛物线的准线的距离为.
    (I)求椭圆的方程和抛物线的方程;
    (II)设上两点,关于轴对称,直线与椭圆相交于点(异于点),直线与轴相交于点.若的面积为,求直线的方程.
    【答案】(Ⅰ), .(Ⅱ),或.
    【解析】
    (Ⅰ)解:设的坐标为.依题意, , , ,解得, , ,于是.所以,椭圆的方程为,抛物线的方程为.
    (Ⅱ)解:设直线的方程为,与直线的方程联立,可得点,故.将与联立,消去,整理得,解得,或.由点异于点,可得点.由,可得直线的方程为,令,解得,故.所以.又因为的面积为,故,整理得,解得,所以.
    所以,直线的方程为,或.
    20.【2017江苏,17】 如图,在平面直角坐标系中,椭圆的左、右焦点分别为, ,离心率为,两准线之间的距离为8.点在椭圆上,且位于第一象限,过点作 直线的垂线,过点作直线的垂线.
    (1)求椭圆的标准方程;
    (2)若直线的交点在椭圆上,求点的坐标.
    【答案】(1)(2)
    【解析】(1)设椭圆的半焦距为c.
    因为椭圆E的离心率为,两准线之间的距离为8,所以, ,
    解得,于是,
    因此椭圆E的标准方程是.
    (2)由(1)知, , .
    设,因为点为第一象限的点,故.
    当时, 与相交于,与题设不符.
    当时,直线的斜率为,直线的斜率为.
    因为, ,所以直线的斜率为,直线的斜率为,
    从而直线的方程: , ①
    直线的方程: . ②
    由①②,解得,所以.
    因为点在椭圆上,由对称性,得,即或.
    又在椭圆E上,故.
    由,解得; ,无解.
    因此点P的坐标为.
    14.【2016高考山东理数】(本小题满分14分)
    平面直角坐标系中,椭圆C: 的离心率是,抛物线E:的焦点F是C的一个顶点.
    ( = 1 \* ROMAN I)求椭圆C的方程;
    ( = 2 \* ROMAN II)设P是E上的动点,且位于第一象限,E在点P处的切线与C交与不同的两点A,B,线段AB的中点为D,直线OD与过P且垂直于x轴的直线交于点M.
    ( = 1 \* rman i)求证:点M在定直线上;
    ( = 2 \* rman ii)直线与y轴交于点G,记的面积为,的面积为,求 的最大值及取得最大值时点P的坐标.
    【答案】(Ⅰ);(Ⅱ)( = 1 \* rman i)见解析;( = 2 \* rman ii)的最大值为,此时点的坐标为
    【解析】
    (Ⅰ)由题意知,可得:.
    因为抛物线的焦点为,所以,
    所以椭圆C的方程为.
    (Ⅱ)(Ⅰ)设,由可得,
    所以直线的斜率为,
    因此直线的方程为,即.
    设,联立方程
    得,
    由,得且,
    因此,
    将其代入得,
    因为,所以直线方程为.
    联立方程,得点的纵坐标为,
    即点在定直线上.
    (Ⅱ)由(Ⅰ)知直线方程为,
    令得,所以,
    又,
    所以,

    所以,
    令,则,
    当,即时,取得最大值,此时,满足,
    所以点的坐标为,因此的最大值为,此时点的坐标为.
    15.【2016高考江苏卷】(本小题满分10分)
    如图,在平面直角坐标系xOy中,已知直线,抛物线
    (1)若直线l过抛物线C的焦点,求抛物线C的方程;
    (2)已知抛物线C上存在关于直线l对称的相异两点P和Q.
    ①求证:线段PQ的中点坐标为;
    ②求p的取值范围.
    【答案】(1)(2)①详见解析,②
    【解析】
    解:(1)抛物线的焦点为
    由点在直线上,得,即
    所以抛物线C的方程为
    (2)设,线段PQ的中点
    因为点P和Q关于直线对称,所以直线垂直平分线段PQ,
    于是直线PQ的斜率为,则可设其方程为
    ①由消去得
    因为P 和Q是抛物线C上的相异两点,所以
    从而,化简得.
    方程(*)的两根为,从而
    因为在直线上,所以
    因此,线段PQ的中点坐标为
    ②因为在直线上
    所以,即
    由①知,于是,所以
    因此的取值范围为
    16.【2016高考天津理数】(本小题满分14分)
    设椭圆()的右焦点为,右顶点为,已知,其中 为原点,为椭圆的离心率.
    (Ⅰ)求椭圆的方程;
    (Ⅱ)设过点的直线与椭圆交于点(不在轴上),垂直于的直线与交于点,与轴交于点,若,且,求直线的斜率的取值范围.
    【答案】(Ⅰ)(Ⅱ)
    【解析】(Ⅰ)解:设,由,即,可得,又,所以,因此,所以椭圆的方程为.
    (Ⅱ)解:设直线的斜率为(),则直线的方程为.
    设,由方程组,消去,整理得.
    解得,或,由题意得,从而.
    由(Ⅰ)知,,设,有,.
    由,得,所以,解得.
    因此直线的方程为.
    设,由方程组消去,解得.
    在中,,即,
    化简得,即,解得或.
    所以,直线的斜率的取值范围为.
    17.【2016高考新课标3理数】已知抛物线:的焦点为,平行于轴的两条直线分别交于两点,交的准线于两点.
    (I)若在线段上,是的中点,证明;
    (II)若的面积是的面积的两倍,求中点的轨迹方程.
    【答案】(Ⅰ)见解析;(Ⅱ).
    【解析】由题设.设,则,且
    .
    记过两点的直线为,则的方程为. 分
    (Ⅰ)由于在线段上,故.
    记的斜率为,的斜率为,则,
    所以. 分
    (Ⅱ)设与轴的交点为,
    则.
    由题设可得,所以(舍去),.
    设满足条件的的中点为.
    当与轴不垂直时,由可得.
    而,所以.
    当与轴垂直时,与重合,所以,所求轨迹方程为. 分
    18.【2016高考浙江理数】(本题满分15分)如图,设椭圆(a>1).
    (I)求直线y=kx+1被椭圆截得的线段长(用a、k表示);
    (II)若任意以点A(0,1)为圆心的圆与椭圆至多有3个公共点,求椭圆离心率的取值
    范围.
    【答案】(I);(II).
    【解析】
    (Ⅰ)设直线被椭圆截得的线段为,由得,
    故,.
    因此.
    (Ⅱ)假设圆与椭圆的公共点有个,由对称性可设轴左侧的椭圆上有两个不同的点,,满足

    记直线,的斜率分别为,,且,,.
    由(Ⅰ)知,,,
    故,
    所以.
    由于,,得,
    因此, ①
    因为①式关于,的方程有解的充要条件是,
    所以.
    因此,任意以点为圆心的圆与椭圆至多有个公共点的充要条件为,
    由得,所求离心率的取值范围为.
    19.【2016高考新课标2理数】已知椭圆的焦点在轴上,是的左顶点,斜率为的直线交于两点,点在上,.
    (Ⅰ)当时,求的面积;
    (Ⅱ)当时,求的取值范围.
    【答案】(Ⅰ);(Ⅱ).
    【解析】(Ⅰ)设,则由题意知,当时,的方程为,.
    由已知及椭圆的对称性知,直线的倾斜角为.因此直线的方程为.
    将代入得.解得或,所以.
    因此的面积.
    (Ⅱ)由题意,,.
    将直线的方程代入得.
    由得,故.
    由题设,直线的方程为,故同理可得,
    由得,即.
    当时上式不成立,
    因此.等价于,
    即.由此得,或,解得.
    因此的取值范围是.
    20.【高考北京理数】(本小题14分)
    已知椭圆C: ()的离心率为 ,,,,的面积为1.
    (1)求椭圆C的方程;
    (2)设的椭圆上一点,直线与轴交于点M,直线PB与轴交于点N.
    求证:为定值.
    【答案】(1);(2)详见解析.
    【解析】
    (Ⅰ)由题意得解得.
    所以椭圆的方程为.
    (Ⅱ)由(Ⅰ)知,,
    设,则.
    当时,直线的方程为.
    令,得,从而.
    直线的方程为.
    令,得,从而.
    所以
    .
    当时,,
    所以.
    综上,为定值.
    21.【高考四川理数】(本小题满分13分)
    已知椭圆E:的两个焦点与短轴的一个端点是直角三角形的三个顶点,直线与椭圆E有且只有一个公共点T.
    (Ⅰ)求椭圆E的方程及点T的坐标;
    (Ⅱ)设O是坐标原点,直线l’平行于OT,与椭圆E交于不同的两点A、B,且与直线l交于点P.证明:存在常数,使得,并求的值.
    【答案】(Ⅰ),点T坐标为(2,1);(Ⅱ).
    【解析】( = 1 \* ROMAN I)由已知,,即,所以,则椭圆E的方程为.
    由方程组 得. = 1 \* GB3 ①
    方程 = 1 \* GB3 ①的判别式为,由,得,
    此方程 = 1 \* GB3 ①的解为,
    所以椭圆E的方程为.
    点T坐标为(2,1).
    ( = 2 \* ROMAN II)由已知可设直线 的方程为,
    有方程组 可得
    所以P点坐标为( ),.
    设点A,B的坐标分别为 .
    由方程组 可得. = 2 \* GB3 ②
    方程 = 2 \* GB3 ②的判别式为,由,解得.
    由 = 2 \* GB3 ②得.
    所以 ,
    同理,
    所以
    .
    故存在常数,使得.
    22. 【2016高考上海理数】(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.
    双曲线的左、右焦点分别为,直线过且与双曲线交于两点。
    (1)若的倾斜角为,是等边三角形,求双曲线的渐近线方程;
    (2)设,若的斜率存在,且,求的斜率.
    【答案】(1).(2).
    【解析】
    (1)设.
    由题意,,,,
    因为是等边三角形,所以,
    即,解得.
    故双曲线的渐近线方程为.
    (2)由已知,,.
    设,,直线.显然.
    由,得.
    因为与双曲线交于两点,所以,且.
    设的中点为.
    由即,知,故.
    而,,,
    所以,得,故的斜率为.
    相关试卷

    高中数学竞赛专题大全竞赛专题7解析几何50题竞赛真题强化训练含解析: 这是一份高中数学竞赛专题大全竞赛专题7解析几何50题竞赛真题强化训练含解析,共45页。试卷主要包含了填空题,解答题等内容,欢迎下载使用。

    高考数学真题专题训练 05平面解析几何(含解析): 这是一份高考数学真题专题训练 05平面解析几何(含解析),共32页。试卷主要包含了 等内容,欢迎下载使用。

    高考数学真题专题训练 14数列综合(含解析): 这是一份高考数学真题专题训练 14数列综合(含解析),共27页。试卷主要包含了设数列{an}满足a1=3,.,已知是无穷数列.给出两个性质,已知公比大于的等比数列满足.,已知为等差数列,为等比数列,.等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map