2023年人教版数学八年级下册期末复习《几何解答题》专项复习(含答案)
展开2023年人教版数学八年级下册期末复习
《几何解答题》专项复习
1.如图,在△ABC中,D是BC上一点,且满足AC=AD,请你说明AB2=AC2+BC·BD.
2.如图,在△ABC中,∠ABC=45º,CD⊥AB,BE⊥AC,垂足分别为D、E,F为BC中点,BE与DF、DC分别交于点G、H,∠ABE=∠CBE.
(1)线段BH与AC相等吗?若相等给予证明,若不相等请说明理由;
(2)求证:BG2﹣GE2=EA2.
3.如图,已知∠C=90°,AM=CM,MP⊥AB于P.
求证:BP2=AP2+BC2.
4.在▱ABCD中,E,F分别是AB,DC上的点,且AE=CF,连接DE,BF,AF.
(1)求证:四边形DEBF是平行四边形;
(2)若AF平分∠DAB,AE=3,DE=4,BE=5,求AF的长.
5.如图,已知四边形ABCD为矩形,AD=20cm、AB=10cm.M点从D到A,P点从B到C,两点的速度都为2cm/s;N点从A到B,Q点从C到D,两点的速度都为1cm/s.若四个点同时出发.
(1)判断四边形MNPQ的形状.
(2)四边形MNPQ能为菱形吗?若能,请求出此时运动的时间;若不能,说明理由.
6.如图,已知在菱形ABCD中,F为边BC的中点,DF与对角线AC交于M,过M作ME⊥CD于E,∠1=∠2.
(1)若CE=1,求BC的长;
(2)求证:AM=DF+ME.
7.如图,将矩形纸片ABCD沿对角线AC折叠,使点B落到点B′的位置,AB′与CD交于点E.
(1)试找出一个与△AED全等的三角形,并加以证明;
(2)若AB=8,DE=3,P为线段AC上的任意一点,PG⊥AE于G,PH⊥EC于H,试求PG+PH的值,并说明理由.
8.如图,在矩形ABCD中,E是BC的中点,将△ABE沿AE折叠后得到△AFE,点F在矩形ABCD内部,延长AF交CD于点G.
(1)猜想线段GF与GC有何数量关系?并证明你的结论;
(2)若AB=3,AD=4,求线段GC的长.
9.如图,在△ABC中,点O是AC边上一动点,过点O作BC的平行线交∠ACB的角平分线于点E,交∠ACB的外角平分线于点F.
(1)求证:EO=FO;
(2)当点O运动到何处时,四边形CEAF是矩形?请证明你的结论.
(3)在(2)问的结论下,若AE=3,EC=4,AB=12,BC=13,求△ABC的面积.
10.如图,在△ABC中,∠BAC=45°,AD⊥BC于D,将△ACD沿AC折叠为△ACF,将△ABD沿AB折叠为△ABG,延长FC和GB相交于点H.
(1)求证:四边形AFHG为正方形;
(2)若BD=6,CD=4,求AB的长.
11.如图(1),在Rt△ABC,∠ACB=90°,分别以AB、BC为一边向外作正方形ABFG、BCED,连结AD、CF,AD与CF交于点M.
(1)求证:△ABD≌△FBC;
(2)如图(2),求证:AM2+MF2=AF2.
12.如图,在正方形ABCD中,AC是对角线,今有较大的直角三角板,一边始终经过点B,直角顶点P在射线AC上移动,另一边交DC于点Q.
(1)如图①,当点Q在DC边上时,猜想并写出PB与PQ所满足的数量关系,并加以证明;
(2)如图②,当点Q落在DC的延长线上时,猜想并写出PB与PQ满足的数量关系,并证明你的猜想.
13.如图,在四边形ABCD中,E,F,G,H分别是AB,BD,CD,AC的中点,AD=BC.
求证:四边形EFGH是菱形.
14.如图,在△ABC中,BD、CE分别为AC、AB边上的中线,BD、CE交于点H,点G、F分别为HC、HB的中点,连接AH、DE、EF、FG、GD,其中HA=BC.
(1)证明:四边形DEFG为菱形;
(2)猜想当AC、AB满足怎样的数量关系时,四边形DEFG为正方形,并说明理由.
15.如图,已知把一个含45°的三角板的锐角顶点与正方形ABCD的顶点A重合,然后将三角板绕点A顺时针旋转,它的两边分别交CB、DC(或它们的延长线)于点M、N.
(1)如图1,当三角板绕点A旋转到BM=DN时,有BM+DN=MN.当三角板绕点A旋转到BM≠DN时,如图2,请问图1中的结论还是否成立?如果成立,请给予证明,如果不成立,请说明理由;
(2)当三角板绕点A旋转到如图3的位置时,线段BM,DN和MN之间有怎样的等量关系?请写出你的猜想,并证明.
参考答案
1.证明:作AE⊥BC于E,如图所示:
则∠AEB=∠AEC=90°,
由勾股定理得:AB2=AE2+BE2,AE2=AD2﹣DE2,
∵AC=AD,AE⊥DC,
∴DE=CE,
∴AB2=AC2+BE2﹣DE2=AC2+(BE+DE)(BE﹣DE)=AC2+BC•BD.
2.解:(1)BH=AC
证明:∵∠BDC=∠BEC=∠CDA=90º, ∠ABC=45º,
∴∠BCD=45º=∠ABC,
∴DB=DC.
又∵∠BHD=∠CHE,
∴∠DBH=∠DCA,
∴△DBH≌△DCA,
∴BH=AC.
(2)证明:连接GC,
∴GC2﹣GE2=EC2.
∵F为BC的中点,DB=DC,
∴DF垂直平分BC,
∴BG=GC,
∴BG2﹣GE2=EC2.
∵∠ABE=∠CBE,
∴EC=EA,
∴BG2﹣GE2=EA2
3.证明:连接BM,如图,
∵△ABC是直角三角形,∠C=90°,
∴AB2=BC2+AC2,则AB2﹣AC2=BC2.
又∵在直角△AMP中,AP2=AM2﹣MP2,
∴AB2﹣AC2+(AM2﹣MP2)=BC2+(AM2﹣MP2).
又∵AM=CM,
∴AB2﹣AC2+(AM2﹣MP2)=BC2+(MC2﹣MP2),①
∵△APM是直角三角形,
∴AM2=AP2+MP2,则AM2﹣MP2=AP2,②
∵△BPM与△BCM都是直角三角形,
∴BM2=BP2+MP2=MC2+BC2,
MC2+BC2﹣MP2=BM2﹣MP2=BP2,③
把②③代入①,得AB2﹣AC2+AP2=BP2,
即BP2=AP2+BC2.
4.证明:(1)∵四边形ABCD是平行四边形,
∴∠A=∠C,AD=CB,
在△DAE和△BCF中,AD=BC,∠A=∠C,AE=CF.
∴△DAE≌△BCF(SAS),
∴DE=BF,
∵AB=CD,AE=CF,
∴AB﹣AE=CD﹣CF,
即DF=BE,
∵DE=BF,BE=DF,
∴四边形DEBF是平行四边形;
(2)∵AB∥CD,
∴∠DFA=∠BAF,
∵AF平分∠DAB,
∴∠DAF=∠BAF,
∴∠DAF=∠AFD,
∴AD=DF,
∵四边形DEBF是平行四边形,
∴DF=BE=5,BF=DE=4,
∴AD=5,
∵AE=3,DE=4,
∴AE2+DE2=AD2,
∴∠AED=90°,
∵DE∥BF,
∴∠ABF=∠AED=90°,
∴AF=4.
5.解:(1)四边形MNPQ是平行四边形. 理由如下:
在矩形ABCD中,AD=BC=20cm,AB=CD=10cm,且∠A=∠B=∠C=∠D=90°.
设运动时间为t秒,则AN=CQ=t cm,BP=DM=2t cm.
∴BN=DQ=(10﹣t)cm,CP=AM=(20﹣2t)cm.
由勾股定理可得,NP=,MQ=
∴NP=MQ.
同理,可得MN=PQ.
∴四边形MNPQ是平行四边形.
(2)能.理由如下:
∵当四边形MNPQ能为菱形时,NP=QP,
∴=,
∴=,解得 t=5.
即四边形MNPQ能为菱形时,运动时间是5 s.
6.解:(1)∵四边形ABCD是菱形,
∴AB∥CD,
∴∠1=∠ACD,
∵∠1=∠2,
∴∠ACD=∠2,
∴MC=MD,
∵ME⊥CD,
∴CD=2CE,
∵CE=1,
∴CD=2,
∴BC=CD=2;
(2)证明:如图,∵F为边BC的中点,
∴BF=CF=BC,
∴CF=CE,
在菱形ABCD中,AC平分∠BCD,
∴∠ACB=∠ACD,
在△CEM和△CFM中,
∵,
∴△CEM≌△CFM(SAS),
∴ME=MF,
延长AB交DF的延长线于点G,
∵AB∥CD,
∴∠G=∠2,
∵∠1=∠2,
∴∠1=∠G,
∴AM=MG,
在△CDF和△BGF中,
∵
∴△CDF≌△BGF(AAS),
∴GF=DF,由图形可知,GM=GF+MF,
∴AM=DF+ME.
7.解:(1)△AED≌△CEB′
证明:∵四边形ABCD为矩形,
∴B′C=BC=AD,∠B′=∠B=∠D=90°,
又∵∠B′EC=∠DEA,
∴△AED≌△CEB′;
(2)由折叠的性质可知,∠EAC=∠CAB,
∵CD∥AB,
∴∠CAB=∠ECA,
∴∠EAC=∠ECA,
∴AE=EC=8﹣3=5.在△ADE中,AD=4,
延长HP交AB于M,则PM⊥AB,
∴PG=PM.
∴PG+PH=PM+PH=HM=AD=4.
8.解:(1)GF=GC.理由如下:连接GE,
∵E是BC的中点,
∴BE=EC,
∵△ABE沿AE折叠后得到△AFE,
∴BE=EF,
∴EF=EC,
∵在矩形ABCD中,
∴∠C=90°,
∴∠EFG=90°,
∵在Rt△GFE和Rt△GCE中,
∴Rt△GFE≌Rt△GCE(HL),
∴GF=GC;
(2)设GC=x,则AG=3+x,DG=3﹣x,
在Rt△ADG中,
42+(3﹣x)2=(3+x)2,解得x=.
9.证明:(1)∵EF∥BC,
∴∠OEC=∠BCE,
∵CE平分∠ACB,
∴∠BCE=∠OCE,
∴∠OEC=∠OCE,
∴EO=CO,
同理:FO=CO,
∴EO=FO;
(2)解:当点O运动到AC的中点时,四边形CEAF是矩形;
理由如下:由(1)得:EO=FO,
又∵O是AC的中点,
∴AO=CO,
∴四边形CEAF是平行四边形,
∵EO=FO=CO,
∴EO=FO=AO=CO,
∴EF=AC,
∴四边形CEAF是矩形;
(3)解:由(2)得:四边形CEAF是矩形,
∴∠AEC=90°,
∴AC==5,
△ACE的面积=AE×EC=×3×4=6,
∵122+52=132,即AB2+AC2=BC2,
∴△ABC是直角三角形,∠BAC=90°,
∴△ABC的面积=AB•AC=×12×5=30.
10.证明:(1)∵AD⊥BC,
∴∠ADB=∠ADC=90°;
由折叠可知,AG=AF=AD,∠AGH=∠AFH=90°,
∠BAG=∠BAD,∠CAF=∠CAD,
∴∠BAG+∠CAF=∠BAD+∠CAD=∠BAC=45°;
∴∠GAF=∠BAG+∠CAF+∠BAC=90°;
∴四边形AFHG是正方形,
解:(2)∵四边形AFHG是正方形,
∴∠BHC=90°,
又GH=HF=AD,GB=BD=6,CF=CD=4;
设AD的长为x,
则BH=GH﹣GB=x﹣6,CH=HF﹣CF=x﹣4.
在Rt△BCH中,BH2+CH2=BC2,
∴(x﹣6)2+(x﹣4)2=102,解得x1=12,x2=﹣2(不合题意,舍去),
∴AD=12,
∴AB=6.
11.解:(1)∵四边形ABFG、BCED是正方形,
∴AB=FB,CB=DB,∠ABF=∠CBD=90°,
∴∠ABF+∠ABC=∠CBD+∠ABC,即∠ABD=∠CBF,
在△ABD和△FBC中,
,
∴△ABD≌△FBC(SAS);
(2)∵△ABD≌△FBC,
∴∠BAD=∠BFC,
∴∠AMF=180°﹣∠BAD﹣∠CNA=180°﹣(∠BFC+∠BNF)=180°﹣90°=90°,
∴AM2+MF2=AF2.
12.解:(1)PB=PQ.证明:连接PD,
∵四边形ABCD是正方形,
∴∠ACB=∠ACD,∠BCD=90°,BC=CD,
又∵PC=PC,
∴△DCP≌△BCP(SAS),
∴PD=PB,∠PBC=∠PDC,
∵∠PBC+∠PQC=180°,∠PQD+∠PQC=180°,
∴∠PBC=∠PQD,
∴∠PDC=∠PQD,
∴PQ=PD,
∴PB=PQ
(2)PB=PQ.证明:连接PD,
同(1)可证△DCP≌△BCP,
∴PD=PB,∠PBC=∠PDC,
∵∠PBC=∠Q,
∴∠PDC=∠Q,
∴PD=PQ,
∴PB=PQ.
13.证明:∵E,F分别是AB,BD的中点,
∴EF=0.5AD.
同理可得:GH=0.5AD,GF=0.5BC,HE=0.5BC,
又AD=BC,∴EF=GF=GH=HE.
∴四边形EFGH是菱形.
14.(1)证明:∵D、E分别为AC、AB的中点,
∴ED∥BC,ED=BC.
同理FG∥BC,FG=BC,
∴ED∥FG,ED=FG,
∴四边形DEFG是平行四边形,
∵AE=BE,FH=BF,
∴EF=HA,
∵BC=HA,
∴EF=BC=DE,
∴▱DEFG是菱形;
(2)解:猜想:AC=AB时,四边形DEFG为正方形,
理由是:∵AB=AC,
∴∠ACB=∠ABC,
∵BD、CE分别为AC、AB边上的中线,
∴CD=AC,BE=AB,
∴CD=BE,
在△DCB和△EBC中,
∵,
∴△DCB≌△EBC(SAS),
∴∠DBC=∠ECB,
∴HC=HB,
∵点G、F分别为HC、HB的中点,
∴HG=HC,HF=HB,
∴GH=HF,
由(1)知:四边形DEFG是菱形,
∴DF=2FH,EG=2GH,
∴DF=EG,
∴四边形DEFG为正方形.
15.解:(1)中的结论仍然成立,即 BM+DN=MN.
证明:如图1,在MB的延长线上截取BE=DN,连结AE.
易证△ABE≌△ADN(SAS).
∴ AE=AN,∠EAB=∠NAD.
∵∠BAD=90°,∠NAM=45°,
∴∠BAM+∠NAD=45°,
∴∠EAB+∠BAM=45°.
∴∠EAM=∠NAM.又AM为公共边,
∴△AEM≌△ANM.
∴ME=MN.
∴MN=ME=BE+BM=DN+BM,即DN+BM=MN.
(2)猜想:线段BM,DN和MN之间的等量关系为:DN-BM=MN.
证明:如图2,在DN上截取DE=MB,连结AE.
易证△ABM≌△ADE(SAS).
∴AM=AE,∠MAB=∠EAD.
易证△AMN≌△AEN(SAS).
∴MN=EN.
∵DN-DE=EN,
∴DN-BM=MN.
2023年人教版数学八年级下册期末复习《最值问题》专项复习(含答案): 这是一份2023年人教版数学八年级下册期末复习《最值问题》专项复习(含答案),共14页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023年人教版数学八年级下册期末复习《图形的折叠问题》专项复习(含答案): 这是一份2023年人教版数学八年级下册期末复习《图形的折叠问题》专项复习(含答案),共13页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023年人教版数学七年级下册期末复习《平行线的性质与判定》解答题专项复习(含答案): 这是一份2023年人教版数学七年级下册期末复习《平行线的性质与判定》解答题专项复习(含答案),共13页。