初中数学人教版 (五四制)八年级上册21.1 整式的乘法完整版ppt课件
展开21.1整式的乘法(第4课时)
21.1.4 整式的乘法(第2课时)
一、教学目标
(一)学习目标
1.以实际问题为背景引入,激发学生对新知探索的欲望,调动学生的学习积极性.
2.理解多项式与多项式相乘的法则,并会用法则进行简单的计算;经历探索多项式与多项式相乘的法则的过程,培养学生观察、归纳、有条理的思考及语言表达等的能力,渗透转化、整体、数形结合等数学思想.
3.灵活运用多项式乘多项式的运算法则进行计算.
(二)学习重点
多项式与多项式相乘的法则的理解及其运用.
(三)学习难点
探索多项式与多项式相乘的法则,灵活地进行整式的乘法运算.
二、教学设计
(一)课前设计
1.预习任务
多项式与多项式相乘的法则:
多项式与多项式相乘,先把一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.
2.预习自测
(1)计算:
【知识点】多项式与多项式相乘的法则.
【数学思想】
【解题过程】
解:
【思路点拨】利用多项式与多项式相乘的法则计算.
【答案】 .
(2)计算:
【知识点】多项式与多项式相乘的法则.
【数学思想】转化思想
【解题过程】解:
【思路点拨】先将乘方运算转化为多项式与多项式相乘的运算,再利用多项式与多项式相乘的法则计算.
【答案】 .
(二)课堂设计
1.知识回顾
(1)单项式与单项式相乘的法则:单项式与单项式相乘,把他们的系数、同底数幂分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.
(2)单项式与多项式相乘的法则:单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.
2.问题探究
探究一:回顾旧知,创设情境,引入新课
●活动① 回顾旧知,回忆乘法交换律,乘法结合律,乘法分配律
乘法交换律:
乘法结合律:
乘法分配律:
【设计意图】通过对旧知识的复习,为新知识的学习作铺垫.
●活动② 整合旧知,引出课题
问题1:“人人参与,全民健身”,为了适应锻炼人群的需求,市政府决定把原来长为米,宽为米的长方形运动场增长米,加宽米.你能用几种方法求出扩大后的运动场面积?
学生先独立思考,再小组讨论,可以得出以下四种方法:
方法一:(合成一个整体看).
方法二:(看作两个长方形之和)或.
方法三:(分成四个部分看).
所以,就可以得到:
或者.
问题2:观察方法一,这是一个多项式与多项式相乘的式子,怎样进行多项式与多项式的乘法运算呢?多项式与多项式的乘法运算能否转化成前面学习的单项式与多项式的乘法运算呢?带着这些问题来学习今天的新课!
【设计意图】用熟悉的话题引入课题,调动学生学习积极性.多种方法求面积培养学生的发散思维,也从形的角度让学生感知多项式与多项式相乘的运算.
探究二:探究多项式与多项式相乘的法则,并会运用法则计算.★ ▲
●活动① 大胆猜想,探究多项式与多项式相乘的法则.
问题1:你能试着说说是怎么计算来的吗?
问题2:你能说说计算的依据吗?
学生小组讨论
师生共同得出:可以把看成一个整体,利用乘法分配律把多项式与多项式相乘的问题转化成了单项式与多项式相乘的的问题,再利用单项式与多项式的相乘法则得到,进而继续用单项式与多项式相乘法则得到
.
师:最后就可以得到:
.
学生在回答了两个问题后,也可以让学生根据前面获得的经验继续说说和是怎么计算得到的.
【设计意图】从数的角度引导学生对的理解,培养了学生的观察、有条理的思考和语言表达能力,也渗透了转化、整体、数形结合的思想.
●活动② 集思广益,归纳多项式与多项式相乘的法则.
问题1:观察式子,左边是多项式与多项式的乘法,怎么得到右边的几个单项式之和呢?
问题2:你能用语言叙述多项式与多项式相乘的法则吗?
学生独立思考,再小组讨论,小组派代表发表看法
学生发言,师完善,得出结论:
多项式与多项式相乘的法则:多项式与多项式相乘,先把一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.
追问:你能用字母表示这个法则吗?
学生能很快回答:
.
【设计意图】由前面形和数两个角度的理解,再让学生用文字语言叙述多项式与多项式相乘的法则,及字母表示法则,培养学生的观察,独立思考,归纳能力和小组合作意识.
探究三 运用新知,典例精析
●活动① 基础性例题
例1计算:
(1); (2);(3).
【知识点】多项式与多项式相乘的法则
【数学思想】
【解题过程】
解:(1)
(2)
(3)
【思路点拨】利用多项式与多项式相乘的法则计算,计算过程中注意:(1)不要漏项,两个多项式相乘,在没有合并之前的项数应该是两个多项式项数的积,最后才合并同类项;(2)每项符号的确定.
【答案】(1);(2);(3)
练习:(1);(2);(3).
【知识点】多项式与多项式相乘的法则
【数学思想】
【解题过程】
解:(1)
(2)
(3)
【思路点拨】利用多项式与多项式相乘的法则计算,计算过程中注意:不要漏项和每项符号的确定.
【答案】(1);(2) ;(3).
【设计意图】巩固多项式与多项式相乘的法则,特别是第3题的类型是两项与三项相乘,要注意每一项都要和每一项相乘,不要漏项,也要注意每项的符号确定.
●活动2 提升型例题
例2化简求值:,其中
【知识点】多项式与多项式相乘的法则
【数学思想】
【解题过程】解:
当时,
【思路点拨】先利用多项式与多项式相乘的法则化简,再将代入式子求解.
【答案】
练习: 化简求值:,其中,.
【知识点】多项式与多项式相乘,单项式与多项式相乘,单项式与单项式相乘的法则,合并同类项法则.
【数学思想】
【解题过程】解:
当,时,
【思路点拨】利用多项式与多项式相乘,单项式与多项式相乘,单项式与单项式相乘的法则,合并同类项法则计算,再将,代入式子求解,注意计算过程中各项符号的确定,及不要漏项.
【答案】
例3 解下列不等式:
【知识点】多项式与多项式相乘的法则,解不等式的方法
【数学思想】
【解题过程】解:
【思路点拨】利用多项式与多项式相乘的法则左右两边化简,再利用解不等式的方法求不等式的解集,化简求解过程中注意:不要漏项和每项符号的确定,及移项变号.
【答案】
练习 解下列方程:
【知识点】多项式与多项式相乘,单项式与多项式相乘的法则,解方程的方法.
【数学思想】
【解题过程】解:
【思路点拨】利用多项式与多项式相乘,单项式与多项式相乘的法则计算,再利用解方程的方法求方程的解,计算过程中注意:不要漏项,每项符号的确定,解方程过程中移项要变号.
【答案】
【设计意图】在化简求值和解方程及解不等式的计算中,巩固多项式与多项式相乘的法则.
●活动3(探究型例题)
例4 某零件如图所示(上、下宽度相同,左、右宽度相同),
(1)求图中空白部分面积;
(2)求图中阴影部分的面积.
【知识点】多项式与多项式相乘的法则
【数学思想】数形结合思想
【解题过程】
解:(1)
(2)
【思路点拨】根据图形提示,表示出各边的长,再求各部分面积.
【答案】(1);(2)
练习 一块长米,宽米的玻璃,长宽各裁掉米后恰好能覆盖一张办公桌的台面(玻璃与台面一样大小),求台面面积是多少?
【知识点】多项式与多项式相乘的法则
【数学思想】数形结合思想
【解题过程】
【思路点拨】将长和宽分别减去米,得到的图形仍然是长方形,利用多项式与多项式相乘的法则计算求得面积.
【答案】
【设计意图】通过求面积的计算来巩固多项式与多项式相乘的法则,同时渗透数形结合思想.
3. 课堂总结
知识梳理
(1)多项式与多项式相乘的法则:
多项式与多项式相乘,先把一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.
(2)计算时要注意:(1)不要漏项;(2)注意每一项的符号的确定.
重难点归纳
(1)多项式与多项式相乘的法则的理解,三个法则的灵活运用;
(2)学习和运用法则过程中,渗透了转化、整体、数形结合等数学思想.
(三)课后作业
基础型 自主突破
1.计算的结果是( )
A. B. C. D.
【知识点】多项式与多项式相乘的法则
【数学思想】
【解题过程】
【思路点拨】利用多项式与多项式相乘的法则计算,注意不要漏项和各项符号的确定
【答案】C.
2.下列各式中,计算正确的是( )
A. B. C. D.
【知识点】多项式与多项式相乘的法则
【数学思想】
【解题过程】
【思路点拨】利用多项式与多项式相乘的法则计算每个选项,注意不要漏项和各项符号的确定
【答案】B.
3.下列计算结果为( )
A. B. C. D.
【知识点】多项式与多项式相乘的法则
【数学思想】
【解题过程】
【思路点拨】利用多项式与多项式相乘的法则计算每个选项,最后确定
【答案】C.
4.关于的一次二项式的积中常数项为21,则的值为( )
A. B. C.3 D.7
【知识点】多项式与多项式相乘的法则
【数学思想】
【解题过程】
【思路点拨】利用多项式与多项式相乘的法则计算,注意各项的符号的确定
【答案】A.
5.若,,则代数式的值为( )
A.1 B. C.0 D.7
【知识点】多项式与多项式相乘的法则
【数学思想】整体代换思想
【解题过程】
【思路点拨】利用多项式与多项式相乘的法则计算,注意各项的符号的确定,把,分别当作整体代入原式,从而求解.
【答案】C.
6.一个长方形的长为,宽为,把长减少1,宽增加2,则面积增加( )
A. B. C. D.
【知识点】多项式与多项式相乘的法则,合并同类项法则
【数学思想】数形结合思想
【解题过程】
【思路点拨】利用多项式与多项式相乘的法则计算,注意各项的符号的确定
【答案】B.
能力型 师生共研
7.化简求值:,其中
【知识点】多项式与多项式相乘的法则,合并同类项法则.
【数学思想】
【解题过程】
当时,
【思路点拨】利用多项式与多项式相乘的法则计算,注意不要漏项和各项的符号的确定.
【答案】.
8.解方程:.
【知识点】多项式与多项式相乘的法则,合并同类项法则,解方程的方法.
【数学思想】
【解题过程】
【思路点拨】利用多项式与多项式相乘的法则计算,注意不要漏项和各项的符号的确定,注意移项变号.
【答案】.
探究型 多维突破
9.如果的乘积中不含和的项,求b和c的值.
【知识点】多项式与多项式相乘的法则,合并同类项法则.
【数学思想】方程思想
【解题过程】
因为乘积中不含和的项,所以,解得:
【思路点拨】利用多项式与多项式相乘的法则计算,注意不要漏项和各项的符号的确定.
【答案】.
10.有一种打印纸长为,宽为,在打印(纵向)某文档设置边距时,上,下均设置为,左右均设置为,那么一张这样的打印纸的实际打印面积是多少?
【知识点】多项式与多项式相乘的法则,合并同类项法则
【数学思想】数形结合思想
【解题过程】
根据题意得:
【思路点拨】弄清题意,利用多项式与多项式相乘的法则计算,从而求出面积.
【答案】
自助餐
1.若,则的值为( )
A.5 B. C. D.7
【知识点】多项式与多项式相乘的法则,合并同类项法则.
【数学思想】对应思想
【解题过程】
又因为,所以
即,,所以
【思路点拨】利用多项式与多项式相乘的法则计算
【答案】B.
2.下列结算个结果正确的是( )
A. B. C. D.
【知识点】多项式与多项式相乘的法则,合并同类项法则.
【数学思想】
【解题过程】.
【思路点拨】利用多项式与多项式相乘的法则计算,注意各项的符号的确定.
【答案】A.
3.用如图所示的A类、B类、C类卡片若干张,拼成一个长为,宽为的矩形,则分别需要A类卡片_______张,B类卡片_________张,C类卡片_______张.
【知识点】多项式与多项式相乘的法则,合并同类项法则.
【数学思想】数形结合思想,对应思想
【解题过程】
又因为,,
所以,即需要A类卡片3张, B类卡片14张,C类卡片8张.
【思路点拨】利用多项式与多项式相乘的法则计算,根据各类卡片的面积确定各类卡片的张数.
【答案】A类卡片3张,B类卡片14张,C类卡片8张.
4.若,则,.
【知识点】多项式与多项式相乘的法则,合并同类项法则.
【数学思想】对应思想,方程思想.
【解题过程】
又因为,
所以
即,得
【思路点拨】利用多项式与多项式相乘的法则计算,注意各项的符号的确定.
【答案】,.
5.已知,将下式化简,再求值.
【知识点】多项式与多项式相乘的法则,合并同类项法则.
【数学思想】整体代换思想
【解题过程】
又因为,
所以
【思路点拨】利用多项式与多项式相乘的法则计算,把看作一个整体,再用整体代换思想代入从而求解.
【答案】4.
6.甲、乙二人共同计算一道整式乘法: ,由于甲抄错了第一个多项式中的的符号,得到的结果为;由于乙漏抄了第二个多项式中的系数,得到的结果为
(1)你能否知道式子中的,的值各是多少?
(2)请你计算出这道整式乘法题的正确答案.
【知识点】多项式与多项式相乘的法则,合并同类项法则.
【数学思想】对应思想
【解题过程】
(1)因为甲抄错了第一个多项式中的符号得,所以:
即,
,
因为乙漏抄了第二个多项式中的系数得,所以:
即,
,
所以:,得
(2)
【思路点拨】根据条件,变化相应的字母或系数,再利用多项式与多项式相乘的法则计算.
【答案】(1),;(2).
初中人教版 (五四制)22.3 分式方程优质课件ppt: 这是一份初中人教版 (五四制)22.3 分式方程优质课件ppt,文件包含人教版五四学制八上数学223分式方程第2课时课件pptx、人教版五四学制八上数学223分式方程第2课时教案doc等2份课件配套教学资源,其中PPT共21页, 欢迎下载使用。
初中人教版 (五四制)22.1 分式试讲课ppt课件: 这是一份初中人教版 (五四制)22.1 分式试讲课ppt课件,文件包含人教版五四学制八上数学2221分式的乘除第2课时课件pptx、人教版五四学制八上数学2221分式的乘除第2课时教案doc等2份课件配套教学资源,其中PPT共16页, 欢迎下载使用。
初中数学人教版 (五四制)八年级上册21.3 因式分解公开课课件ppt: 这是一份初中数学人教版 (五四制)八年级上册21.3 因式分解公开课课件ppt,文件包含人教版五四学制八上数学2132公式法第2课时课件ppt、人教版五四学制八上数学2132公式法第2课时教案doc等2份课件配套教学资源,其中PPT共19页, 欢迎下载使用。