第39讲 四种类型的验证机械能守恒定律实验设计及数据处理(原卷版)
展开第39讲 四种类型的验证机械能守恒定律实验设计及数据处理
1.(2022·湖北)某同学设计了一个用拉力传感器验证机械能守恒定律的实验。一根轻绳一端连接固定的拉力传感器,另一端连接小钢球,如图甲所示。拉起小钢球至某一位置由静止释放,使小钢球在竖直平面内摆动,记录钢球摆动过程中拉力传感器示数的最大值Tmax和最小值Tmin。改变小钢球的初始释放位置,重复上述过程。根据测量数据在直角坐标系中绘制的Tmax﹣Tmin图像是一条直线,如图乙所示。
(1)若小钢球摆动过程中机械能守恒,则图乙中直线斜率的理论值为 。
(2)由图乙得:直线的斜率为 ,小钢球的重力为 N。(结果均保留2位有效数字)
(3)该实验系统误差的主要来源是 (单选,填正确答案标号)。
A.小钢球摆动角度偏大
B.小钢球初始释放位置不同
C.小钢球摆动过程中有空气阻力
2.(2022·广东)某实验小组为测量小球从某一高度释放,与某种橡胶材料碰撞导致的机械能损失,设计了如图(a)所示的装置,实验过程如下:
(1)让小球从某一高度由静止释放,与水平放置的橡胶材料碰撞后竖直反弹。调节光电门位置,使小球从光电门正上方释放后,在下落和反弹过程中均可通过光电门。
(2)用螺旋测微器测量小球的直径,示数如图(b)所示,小球直径d= mm。
(3)测量时,应 (选填“A”或“B”,其中A为“先释放小球,后接通数字计时器”,B为“先接通数字计时器,后释放小球”)。记录小球第一次和第二次通过光电门的遮光时间t1和t2。
(4)计算小球通过光电门的速度,已知小球的质量为m,可得小球与橡胶材料碰撞导致的机械能损失ΔE= (用字母m、d、t1和t2表示)。
(5)若适当调高光电门的高度,将会 (选填“增大”或“减小”)因空气阻力引起的测量误差。
3.(2022·河北)某实验小组利用铁架台、弹簧、钩码、打点计时器、刻度尺等器材验证系统机械能守恒定律,实验装如图1所示。弹簧的劲度系数为k,原长为L0,钩码的质量为m,已知弹簧的弹性势能表达式为Ekx2,其中k为弹簧的劲度系数,x为弹簧的形变量,当地的重力加速度大小为g。
(1)在弹性限度内将钩码缓慢下拉至某一位置,测得此时弹簧的长度为L。接通打点计时器电源,从静止释放钩码,弹簧收缩,得到了一条点迹清晰的纸带。钩码加速上升阶段的部分纸带如图2所示,纸带上相邻两点之间的时间间隔均为T(在误差允许范围内,认为释放钩码的同时打出A点)。从打出A点到打出F点时间内,弹簧的弹性势能减少量为 ,钩码的动能增加量为 ,钩码的重力势能增加量为 。
(2)利用计算机软件对实验数据进行处理,得到弹簧弹性势能减少量、钩码的机械能增加量分别与钩码上升高度h的关系,如图3所示。
(3)由图3可知,随着h增加,两条曲线在纵向的间隔逐渐变大,主要原因是 。
一.知识回顾
(一)常规实验原理与操作
1.实验目的: 验证机械能守恒定律。
2.实验原理
(1)在只有重力做功的自由落体运动中,物体的重力势能和动能互相转化,但总的机械能保持不变。若物体某时刻瞬时速度为v,下落高度为h,则重力势能的减少量为mgh,动能的增加量为mv2,看它们在实验误差允许的范围内是否相等,若相等则验证了机械能守恒定律。
(2)速度的测量:做匀变速直线运动的物体某段位移中间时刻的瞬时速度等于这段位移的平均速度。
计算打第n点速度的方法:测出第n点与相邻前后点间的距离xn和xn+1,由公式vn=计算,或测出第n-1点和第n+1点与起始点的距离hn-1和hn+1,由公式vn=算出,如图所示。
3.实验器材
铁架台(含铁夹),打点计时器,学生电源,纸带,复写纸,导线,毫米刻度尺,重物(带纸带夹)。
4.实验步骤
(1)安装置:如图所示,将检查、调整好的打点计时器竖直固定在铁架台上,接好电路。
(2)打纸带:将纸带的一端用夹子固定在重物上,另一端穿过打点计时器的限位孔,用手提着纸带使重物静止在靠近打点计时器的地方。先接通电源,后松开纸带,让重物带着纸带自由下落。更换纸带重复做3~5次实验。
(3)选纸带:分两种情况说明
(1)用mv=mghn验证时,应选点迹清晰,且第1、2两点间距离接近2 mm的纸带。若第1、2两点间的距离大于2 mm,则可能是由于先释放纸带后接通电源造成的。这样,第1个点就不是运动的起始点了,这样的纸带不能选。
(2)用mv-mv=mgΔh验证时,处理纸带时不必从起始点开始计算重力势能的大小,这样,纸带上打出的起始点O后的第一个0.02 s内的位移是否接近2 mm,以及第一个点是否清晰也就无关紧要了,实验打出的任何一条纸带,只要后面的点迹清晰,都可以用来验证机械能守恒定律。
5.实验数据处理
(1)测量计算
在起始点标上0,在以后各计数点依次标上1、2、3…,用刻度尺测出对应下落高度h1、h2、h3…。
利用公式vn=计算出打点1、点2、点3…时重物的瞬时速度v1、v2、v3…。
(2)验证守恒
方法一:利用起始点和第n点计算。计算ghn和v,如果在实验误差允许的范围内,ghn=v,则验证了机械能守恒定律。(此方法要求所选纸带必须点迹清晰且第1、2两点间距离接近2 mm)
方法二:任取两点计算。
①任取两点A、B测出hAB,算出ghAB。
②算出v-v的值。
③在实验误差允许的范围内,如果ghAB=v-v,则验证了机械能守恒定律。
方法三:图像法。从纸带上选取多个点,测量从第一个点到其余各点的下落高度h,并计算各点速度的平方v2,然后以v2为纵轴,以h为横轴,根据实验数据绘出v2h图线。若在误差允许的范围内图像是一条过原点且斜率为g的直线,则验证了机械能守恒定律。
6.误差分析
(1)系统误差:本实验中因重物和纸带在下落过程中要克服各种阻力(空气阻力、打点计时器阻力)做功,故动能的增加量ΔEk稍小于重力势能的减少量ΔEp,即ΔEk<ΔEp。改进的办法是调整器材的安装,尽可能地减小阻力。
(2)偶然误差:本实验在长度测量时产生的误差。减小误差的办法是测下落距离时都从0点量起,一次将各打点对应的下落高度测量完,或者多次测量取平均值来减小误差。
7.注意事项
(1)打点计时器要稳定地固定在铁架台上,打点计时器平面与纸带限位孔调整到竖直方向,以减小摩擦阻力。
(2)重物要选用密度大、体积小的物体,这样可以减小空气阻力的影响,从而减小实验误差。
(3)实验中,需保持提纸带的手不动,且保证纸带竖直,待接通电源,打点计时器工作稳定后,再松开纸带。
(4)测量下落高度时,为了减小测量值h的相对误差,选取的各个计数点要离起始点远一些,纸带也不宜过长,有效长度可在60~80 cm之间。
(5)不需测出物体质量,只需验证v=ghn或v-v=ghAB即可。
(6)速度不能用vn=gtn或vn=计算,因为只要认为加速度为g,机械能当然守恒,即相当于用机械能守恒定律验证机械能守恒定律,所以速度应从纸带上直接测量计算。同样的道理,重物下落的高度h,也只能用刻度尺直接测量,而不能用hn=gt或hn=计算得到。
8.实验改进与创新设计
(1)物体下落过程中通过某一位置的速度可以用光电门及数字计时器测出来,利用这种装置验证机械能守恒定律,能消除纸带与限位孔的摩擦阻力带来的系统误差。
(2)整个实验装置可以放在真空的环境中操作,如用牛顿管和频闪照相进行验证,以消除由于空气阻力作用而带来的误差。
(3)为防止重物被释放时的初速度不为零,可将装置改成如图所示形式,剪断纸带最上端,让重物从静止开始下落。
二.典型例题精讲
题型一:验证自由落体运动的物体机械能守恒
例1.如图所示,打点计时器固定在铁架台上,使重物带动纸带从静止开始自由下落,利用此装置验证机械能守恒定律。该装置中的打点计时器所接交流电源频率是50Hz。
(1)对于该实验,下列操作中对减小实验误差有利的是 。
A.精确测量出重物的质量
B.两限位孔在同一竖直线上
C.重物选用质量和密度较大的金属锤
D.释放重物前,重物离打点计时器下端远些
(2)按正确操作得到了一条完整的纸带,由于纸带较长,图中有部分未画出,如图所示。纸带上各点是打点计时器打出的计时点,其中O点为纸带上打出的第一个点。
①重物下落高度应从纸带上计时点间的距离直接测出,利用下列测量值能完成验证机械能守恒定律的选项有 。
A.OA、OB和OG的长度 B.OE、DE和EF的长度
C.BD、BF和EG的长度 D.AC、BF和EG的长度
②用刻度尺测得图中AB的距离是1.76cm,FG的距离是3.71cm,则可计得当地的重力加速度是 m/s2.(计算结果保留三位有效数字)
题型二:验证竖直平面内绳球模型摆动过程的机械能守恒
例2.某同学用如图1所示的装置验证机械能守恒定律.一根细线系住钢球,悬挂在铁架台上,钢球静止于A点,光电门固定在A的正下方.在钢球底部竖直地粘住一片宽带为d的遮光条.将钢球拉至不同位置由静止释放,遮光条经过光电门的挡光时间t可由计时器测出,取v作为钢球经过A点时的速度.记录钢球每次下落的高度h和计时器示数t,计算并比较钢球在释放点和A点之间的势能变化大小△Ep与动能变化大小△Ek,就能验证机械能是否守恒.
(1)用△Ep=mgh计算钢球重力势能变化的大小,式中钢球下落高度h应测量释放时的钢球球心到 之间的竖直距离.
(A)钢球在A点时的顶端
(B)钢球在A点时的球心
(C)钢球在A点时的底端
(2)用△Ekmv2计算钢球动能变化的大小,用刻度尺测量遮光条宽度,示数如图2所示,其读数为 cm.某次测量中,计时器的示数为0.0100s,则钢球的速度为v= m/s.
(3)如表为该同学的实验结果:
他发现表中的△Ep与△Ek之间存在差异,你认为这是 造成的.应该如何修正 .
△Ep(×10﹣2J) | 4.892 | 9.786 | 14.69 | 19.59 | 29.38 |
△Ek(×10﹣2J) | 5.04 | 10.1 | 15.1 | 20.0 | 29.8 |
题型三:验证两个连接的物体系统运动过程的机械能守恒
例3.利用气垫导轨验证机械能守恒定律,实验装置示意图如图所示:
(1)实验步骤
①将气垫导轨放在水平桌面上,桌面高度不低于1m,将导轨调至水平;
②用游标卡尺测量挡光条的宽度l=9.30mm;
③由导轨标尺读出两光电门中心之间的距离s= cm;
④将滑块移至光电门1左侧某处,待砝码静止不动时,释放滑块,要求砝码落地前挡光条已通过光电门2;
⑤从数字计时器(图中未画出)上分别读出挡光条通过光电门1和光电门2所用的时间△t1和△t2;
⑥用天平称出滑块和挡光条的总质量M,再称出托盘和砝码的总质量m.
(2)用表示直接测量量的字母写出下列所示物理量的表达式
①滑块通过光电门1和光电门2时瞬时速度分别为v1= 和v2= .
②当滑块通过光电门1和光电门2时,系统(包括滑块、挡光条、托盘和砝码)的总动能分别为Ek1= 和Ek2= .
③在滑块从光电门1运动到光电门2的过程中,系统势能的减少△Ep= (重力加速度为g).
(3)如果△Ep= ,则可认为验证了机械能守恒定律.
题型四:探究机械能不守恒时的功能关系
例4.某同学利用图1中的实验装置探究机械能变化量与力做功的关系,所用器材有:一端带滑轮的长木板、轻细绳、50g的钩码若干、光电门2个、数字计时器、带遮光条的滑块(质量为200g,其上可放钩码)、刻度尺,当地重力加速度为9.80m/s2,实验操作步骤如下:
①安装器材,调整两个光电门距离为50.00cm,轻细绳下端悬挂4个钩码,如图1所示;
②接通电源,释放滑块,分别记录遮光条通过两个光电门的时间,并计算出滑块通过两个光电门的速度;
③保持最下端悬挂4个钩码不变,在滑块上依次增加一个钩码,记录滑块上所载钩码的质量,重复上述步骤;
④完成5次测量后,计算出每次实验中滑块及所载钩码的总质量M、系统(包含滑块、滑块所载钩码和轻细绳悬挂钩码)总动能的增加量ΔEk及系统总机械能的减少量ΔE,结果如下表所示:
M/kg | 0.200 | 0.250 | 0.300 | 0.350 | 0.400 |
ΔEk/J | 0.582 | 0.490 | 0.392 | 0.294 | 0.195 |
ΔE/J | 0.393 | 0.490 |
| 0.686 | 0.785 |
回答下列问题:
(1)实验中轻细绳所悬挂钩码重力势能的减少量为 J(保留三位有效数字);
(2)步骤④中的数据所缺数量为 ;
(3)若M为横轴,ΔE为纵轴,选择合适的标度,在图2中绘出ΔE﹣M图像;若忽略实验中其他摩擦力做功,则物块与模板之间的摩擦因数为 (保留两位有效数字)。
三.举一反三,巩固练习
- 某小组同学用如图1所示的DIS二维运动实验系统研究单摆在运动过程中机械能的转化和守恒(忽略空气阻力)。实验时,使发射器(相当于摆球)偏离平衡位置后由静止释放,使其在竖直平面内摆动。系统每隔0.02s记录一次发射器的位置,多次往复运动后,在计算机屏幕上得到的发射器在竖直平面内的运动轨迹如图2所示。(当地的重力加速度g=9.8m/s2)
①图2中A点的速度 B点的速度。(填大于、等于或小于)
②在运动轨迹上选取适当区域后,点击“计算数据”,系统即可计算出摆球在所选区域内各点的重力势能、动能及总机械能,并绘出对应的图线,如图3所示。结合图2和图3综合分析,图3中t=0时刻对应图2中的 点(填“A”或“B”)。由图3可知,此单摆的周期为 s。
③图3中的C点对应在图2中圆弧轨迹AB上的某一点,该点在 。
A.圆弧AB中点的左侧
B.圆弧AB中点的右侧
C.圆弧AB的中点
D.信息不够,不能确定
- 某同学在做“验证机械能守恒定律”实验时,将一重球拴接在细绳的一端,另一端固定在O点,使小球在竖直面内做圆周运动,并在小球经过的最低点和最高点分别固定两个光电门,如图甲所示。已知当地重力加速度为g。请回答下列问题:
(1)该同学首先用螺旋测微器测量小球的直径,测量结果如图乙所示,则该小球的直径d= mm;
(2)该同学为了完成实验,测量了重球经过光电门1和光电门2的挡光时间分别为Δt1和Δt2,还需测量的物理量有 (填选项);
A.重球的质量m
B.细绳的长度L
C.重球运动的周期T
(3)重球经过最低点的速度大小为 (用上述测量量和已知量的字母表示);
(4)如果该过程中重球的机械能守恒,在误差允许的范围内,则关系式 成立。(用上述测量量和已知量的字母表示)
(5)实验中产生误差的主要原因: (写出一点即可)。
- 如图1所示为高中物理中的四个力学实验装置。
①关于这四个力学实验,下列说法正确的是 (多选)。
A.实验操作时,四个实验均需先接通电源后释放纸带
B.实验操作时,四个实验均需物体靠近打点计时器处由静止释放
C.四个实验中的物体均做匀变速直线运动
D.数据处理时,四个实验均需计算物体的加速度
②某同学按图1(乙)装置做“探究加速度与力和质量关系”,在正确补偿阻力后,按实验原理打出了12条纸带。如图2(a)所示是根据其中一条纸带上的数据作出的v﹣t图像。打该条纸带时,钩码的总质量 (选填“满足”或“不满足”)远小于小车的质量。
③如图2(b)所示是某同学按图1(丁)装置做“验证机械能守恒”时打出的一条纸带,计时器接在频率为50Hz的交流电源上,从起始O点开始,将此后连续打出的7个点依次标为A、B、C…,已知重锤的质量为0.50kg,当地的重力加速度g=9.8m/s2,从打O点到打F点的过程,重锤重力势能的减少量为 J,重锤动能的增加量为 J。(该小题中的计算结果均保留2位有效数字)
- 阿特伍德机是著名的力学实验装置。绕过定滑轮的细线上悬挂质量相等的重锤A和B,在B下面再挂重物C时,由于速度变化不太快,测量运动学物理量更加方便。
(1)如图所示,在重锤A下方固定打点计时器,用纸带连接A,测量A的运动情况。下列操作过程正确的是 ;
A.固定打点计时器时应将定位轴置于系重锤A的细线的正下方
B.开始时纸带应竖直下垂并与系重锤A的细线在同一竖直线上
C.应先松开重锤让A向上运动,然后再接通打点计时器电源打点
D.打点结束后先将纸带取下,再关闭打点计时器电源
(2)某次实验结束后,打出的纸带如图所示,已知打点计时器所用交流电源的频率为50Hz,则重锤A运动拖动纸带打出H点时的瞬时速度为 m/s;(结果保留三位有效数字)
(3)如果本实验室电源频率不足50Hz,则瞬时速度的测量值 (填“增大”或“减小”);
(4)已知重锤A和B的质量均为M,某小组在重锤壁下面挂质量为m的重物C由静止释放验证系统运动过程中的机械能守恒,某次实验中从纸带上测量A由静止上升h高度时对应计时点的速度为v,则验证系统机械能守恒定律的表达式是 ;
(5)为了测定当地的重力加速度,另一小组改变重物C的质量m,测得多组m和测量对应的加速度a,在坐标上作图如图所示,图线与纵轴截距为b,则当地的重力加速度为 。
第46讲 验证动量守恒的四种实验方案及数据处理方法(原卷版): 这是一份第46讲 验证动量守恒的四种实验方案及数据处理方法(原卷版),共12页。
第46讲 验证动量守恒的四种实验方案及数据处理方法(解析版): 这是一份第46讲 验证动量守恒的四种实验方案及数据处理方法(解析版),共20页。
第40讲 动量与动能、冲量与功的区别及冲量的四种计算方法(原卷版): 这是一份第40讲 动量与动能、冲量与功的区别及冲量的四种计算方法(原卷版),共9页。