备战中考数理化——中考数学模拟试卷 (15)(含答案)
展开备战中考数理化——中考数学模拟试卷15(含答案)
一、选择题(每小题4分,共48分)
1.(4分)﹣的绝对值是( )
A.5 B.﹣ C.﹣5 D.
2.(4分)下列图形是中心对称图形的是( )
A. B.
C. D.
3.(4分)受新型冠状病毒的影响,在2020年3月14日起,我市417所高三初三学校,16.6万学生先后分住校类、部分住校类、走读类分批错时错峰返校,于3月16日正式开学.其中16.6万用科学记数法表示正确的是( )
A.1.66×105 B.16.6×105 C.1.66×106 D.1.66×107
4.(4分)如图,下列结论正确的是( )
A.c>a>b B. C.|a|<|b| D.abc>0
5.(4分)下列运算正确的是( )
A.a+2a=3a2 B.a3•a2=a5 C.(a4)2=a6 D.a4+a2=a4
6.(4分)如表是我国近六年“两会”会期(单位:天)的统计结果:
时间
2014
2015
2016
2017
2018
2019
会期(天)
11
13
14
13
18
13
则我国近六年“两会”会期(天)的众数和中位数分别是( )
A.13,11 B.13,13 C.13,14 D.14,13.5
7.(4分)如图,把一块直角三角板的直角顶点放在直尺的一边上,若∠2=42°,则∠1=( )
A.48° B.42° C.40° D.45°
8.(4分)甲、乙两位同学做中国结,已知甲每小时比乙少做6个,甲做30个所用的时间与乙做45个所用的时间相等,求甲每小时做中国结的个数.如果设甲每小时做x个,那么可列方程为( )
A.= B.= C.= D.=
9.(4分)如图所示,直线l1:y=x+6与直线l2:y=﹣x﹣2交于点P(﹣2,3),不等式x+6>﹣x﹣2的解集是( )
A.x>﹣2 B.x≥﹣2 C.x<﹣2 D.x≤﹣2
10.(4分)如图,以正方形ABCD的顶点A为坐标原点,直线AB为x轴建立直角坐标系,对角线AC与BD相交于点E,P为BC上一点,点P坐标为(a,b),则点P绕点E顺时针旋转90°得到的对应点P′的坐标是( )
A.(a﹣b,a) B.(b,a) C.(a﹣b,0) D.(b,0)
11.(4分)如图,正方形ABCD的边长为3cm,动点M从点B出发以3cm/s的速度沿着边BC﹣CD﹣DA运动,到达点A停止运动,另一动点N同时从点B出发,以1cm/s的速度沿着边BA向点A运动,到达点A停止运动,设点M运动时间为x(s),△AMN的面积为y(cm2),则y关于x的函数图象是( )
A. B.
C. D.
12.(4分)已知一元二次方程ax2+bx+c=0(a≠0)中,下列说法:
①若a+b+c=0,则b2﹣4ac>0;
②若方程两根为﹣1和2,则2a+c=0;
③若方程ax2+c=0有两个不相等的实根,则方程ax2+bx+c=0必有两个不相等的实根;
④若b=2a+c,则方程有两个不相等的实根.其中正确的有( )
A.①②③ B.①②④ C.②③④ D.①②③④
二.填空题(每小题4分,共16分)
13.(4分)八边形内角和度数为 .
14.(4分)在一个不透明的布袋中装有4个白球和n个黄球,它们除颜色不同外,其余均相同,若从中随机摸出一个球,摸到白球的概率是,则n= .
15.(4分)已知△ABC∽△DEF,若△ABC与△DEF的相似比为2:3,则△ABC与△DEF对应边上中线的比为 .
16.(4分)在平面直角坐标系中,点A在x轴正半轴上,点B在y轴正半轴上,O为坐标原点,OA=OB=1,过点O作OM1⊥AB于点M1;过点M1作M1A1⊥OA于点A1:过点A1作A1M2⊥AB于点M2;过点M2作M2A2⊥OA于点A2…以此类推,点M2019的坐标为 .
三、解答题
17.(6分)计算:2sin60°+|﹣2|+(﹣1)﹣1﹣
18.(8分)先化简:,再从﹣1≤m≤2中选取合适的整数代入求值.
19.(10分)如图,楼房BD的前方竖立着旗杆AC.小亮在B处观察旗杆顶端C的仰角为45°,在D处观察旗杆顶端C的俯角为30°,楼高BD为20米.
(1)求∠BCD的度数;
(2)求旗杆AC的高度.
20.(12分)2019年4月23日是第二十四个“世界读书日“.某校组织读书征文比赛活动,评选出一、二、三等奖若干名,并绘成如图所示的条形统计图和扇形统计图(不完整),请你根据图中信息解答下列问题:
(1)求本次比赛获奖的总人数,并补全条形统计图;
(2)求扇形统计图中“二等奖”所对应扇形的圆心角度数;
(3)学校从甲、乙、丙、丁4位一等奖获得者中随机抽取2人参加“世界读书日”宣传活动,请用列表法或画树状图的方法,求出恰好抽到甲和乙的概率.
21.(12分)某竹制品加工厂根据市场调研结果,对该厂生产的一种新型竹制品玩具未来两年的销售进行预测,并建立如下模型:设第t个月,竹制品销售量为P(单位:箱),P与t之间存在如图所示函数关系,其图象是线段AB(不含点A)和线段BC的组合.设第t个月
销售每箱的毛利润为Q(百元),且Q与t满足如下关系Q=2t+8(0≤t≤24)
(1)求P与t的函数关系式(6≤t≤24).
(2)该厂在第几个月能够获得最大毛利润?最大毛利润是多少?
(3)经调查发现,当月毛利润不低于40000且不高于43200元时,该月产品原材料供给和市场售最和谐,此时称这个月为“和谐月”,那么,在未来两年中第几个月为和谐月?
22.(12分)如图,等边△ABC的边长是2,D、E分别为AB、AC的中点,延长BC至点F,使CF=BC,连接CD和EF.
(1)求证:DE=CF;
(2)求EF的长.
23.(12分)如图,⊙O是△ABC的外接圆,点O在BC边上,∠BAC的平分线交⊙O于点D,连接BD、CD,过点D作BC的平行线与AC的延长线相交于点P.
(1)求证:PD是⊙O的切线;
(2)求证:△ABD∽△DCP;
(3)当AB=5cm,AC=12cm时,求线段PC的长.
24.(14分)如图,关于x的二次函数y=x2+bx+c的图象与x轴交于点A(1,0)和点B,与y轴交于点C(0,3),抛物线的对称轴与x轴交于点D.
(1)求二次函数的表达式;
(2)在y轴上是否存在一点P,使△PBC为等腰三角形?若存在.请求出点P的坐标;
(3)有一个点M从点A出发,以每秒1个单位的速度在AB上向点B运动,另一个点N从 点D与点M同时出发,以每秒2个单位的速度在抛物线的对称轴上运动,当点M到达点B时,点M、N同时停止运动,问点M、N运动到何处时,△MNB面积最大,试求出最大面积.
2020年中考数学模拟试卷
参考答案与试题解析
一、选择题(每小题4分,共48分)
1.【解答】解:﹣的绝对值是:.
故选:D.
2.【解答】解:A、不是中心对称图形,故此选项错误;
B、是中心对称图形,故此选项正确;
C、不是中心对称图形,故此选项错误;
D、不是中心对称图形,故此选项错误;
故选:B.
3.【解答】解:16.6万=166000=1.66×105,
故选:A.
4.【解答】解:A、由数轴得:a<b<c,故选项A不正确;
B、∵0<b<1<c,
∴>,
故选项B正确;
C、由数轴得:|a|>|b|,
故选项C不正确;
D、∵a<0,b>0,c>0,
∴abc<0,
故选项D不正确;
故选:B.
5.【解答】解:A、a+2a=3a,此选项错误;
B、a3•a2=a5,此选项正确;
C、(a4)2=a8,此选项错误;
D、a4与a2不是同类项,不能合并,此选项错误;
故选:B.
6.【解答】解:由表知这组数据的众数13,中位数为=13,
故选:B.
7.【解答】解:如图,∵∠2=42°,
∴∠3=90°﹣∠2=48°,
∴∠1=48°.
故选:A.
8.【解答】解:设甲每小时做x个,乙每小时做(x+6)个,
根据甲做30个所用时间与乙做45个所用时间相等,得
,
故选:A.
9.【解答】解:当x>﹣2时,x+6>﹣x﹣2,
所以不等式x+6>﹣x﹣2的解集是x>﹣2.
故选:A.
10.【解答】解:如图,连接PE,点P绕点E顺时针旋转90°得到的对应点P′在x轴上,
∵四边形ABCD 是正方形,
∴∠ABC=90°,
∴∠AEB=90°,AE=BE,∠EAP′=∠EBP=45°,
∵点P坐标为(a,b),
∴BP=b,
∵∠PEP′=90°,
∴∠AEP′=∠PEB,
在△AEP′与△BEP中,,
∴△AEP′≌△BEP(ASA),
∴AP′=BP=b,
∴点P′的坐标是(b,0),
故选:D.
11.【解答】解:由题可得,BN=x,
当0≤x≤1时,M在BC边上,BM=3x,AN=3﹣x,则
S△ANM=AN•BM,
∴y=•(3﹣x)•3x=﹣x2+x,故C选项错误;
当1≤x≤2时,M点在CD边上,则
S△ANM=AN•BC,
∴y=(3﹣x)•3=﹣x+,故D选项错误;
当2≤x≤3时,M在AD边上,AM=9﹣3x,
∴S△ANM=AM•AN,
∴y=•(9﹣3x)•(3﹣x)=(x﹣3)2,故B选项错误;
故选:A.
12.【解答】解:①当x=1时,有若a+b+c=0,即方程有实数根了,
∴△≥0,故错误;
②把x=﹣1代入方程得到:a﹣b+c=0 (1)
把x=2代入方程得到:4a+2b+c=0 (2)
把(2)式减去(1)式×2得到:6a+3c=0,
即:2a+c=0,故正确;
③方程ax2+c=0有两个不相等的实数根,
则它的△=﹣4ac>0,
∴b2﹣4ac>0而方程ax2+bx+c=0的△=b2﹣4ac>0,
∴必有两个不相等的实数根.故正确;
④若b=2a+c则△=b2﹣4ac=(2a+c)2﹣4ac=4a2+c2,
∵a≠0,
∴4a2+c2>0故正确.
②③④都正确,故选C.
二.填空题(每小题4分,共16分)
13.【解答】解:(8﹣2)•180°=6×180°=1080°.
故答案为:1080°.
14.【解答】解:不透明的布袋中的球除颜色不同外,其余均相同,共有n+4个球,其中白球4个,
根据古典型概率公式知:P(白球)==,
解得:n=8,
故答案为:8.
15.【解答】解:∵△ABC∽△DEF,△ABC与△DEF的相似比为2:3,
∴△ABC与△DEF对应边上中线的比是2:3,
故答案为:2:3.
16.【解答】解:∵OA=OB,OM1⊥AB,
∴点M1是AB的中点,
∵M1A1⊥OA,
∴A1是OA的中点,
∴点M1的坐标为(,),
同理,点M2的坐标为(1﹣,),
点M3的坐标为(1﹣,),
……
点M2019的坐标为(1﹣,),
故答案为:(1﹣,).
三、解答题
17.【解答】解:原式=2×+2﹣﹣1+2
=+2﹣﹣1+2
=3.
18.【解答】解:原式=•
=,
根据分式有意义的条件可知:m=﹣1,
∴原式=
19.【解答】解:(1)过点C作CE⊥BD于E,则DF∥CE,AB∥CE
∵DF∥CE
∴∠ECD=∠CDF=30°
同理∠ECB=∠ABC=45°
∴∠BCD=∠ECD+∠ECB=75°.
(2)在Rt△ECD中,∠ECD=30°
∵
∴
同理BE=CE
∵BD=BE+DE
∴,
答:(1)∠BCD为75°;
(2)旗杆AC的高度CE为米.
20.【解答】解:(1)本次比赛获奖的总人数为4÷10%=40(人),
二等奖人数为40﹣(4+24)=12(人),
补全条形图如下:
(2)扇形统计图中“二等奖”所对应扇形的圆心角度数为360°×=108°;
(3)树状图如图所示,
∵从四人中随机抽取两人有12种可能,恰好是甲和乙的有2种可能,
∴抽取两人恰好是甲和乙的概率是=.
21.【解答】解:(1)当6≤t≤24时,设P与t的函数关系式为P=kt+b
∵该图象过点B(6,20)和C(24,2)
∴
∴
∴P与t的函数关系式为P=﹣t+26(6≤t≤24).
(2)设直线AB的函数解析式为P=mt+n,将A(0,14),B (6,20)代入得:
∴
∴直线AB的函数解析式为P=t+14
∴当0<t<6时,
利润L=QP=(2t+8)(t+14)=2t2+36t+112=2(t+9)2﹣50
当t=5时,利润L取最大值为2(5+9)2﹣50=342(百元)=34200(元);
当6≤t≤24时,
利润L=QP=(2t+8)(﹣t+26)=﹣2t2+44t+208=﹣2(t﹣11)2+450
450百元=45000元
∴当t=11时,利润L有最大值,最大值为45000元.
综上,该厂在第11个月能够获得最大毛利润,最大毛利润是45000元.
(3)∵40000元=400元,43200元=432百元
∴或
第一个不等式无解,第二个不等式的解为6≤t≤8或14≤t≤16
∴未来两年中的和谐月有:6,7,8,14,15,16这六个月.
22.【解答】(1)证明:∵D、E分别为AB、AC的中点,
∴DE为△ABC的中位线,
∴DEBC,
∵延长BC至点F,使CF=BC,
∴DE=FC;
(2)解:∵DEFC,
∴四边形DEFC是平行四边形,
∴DC=EF,
∵D为AB的中点,等边△ABC的边长是2,
∴AD=BD=1,CD⊥AB,BC=2,
∴DC=EF=.
23.【解答】解:(1)如图,连接OD,
∵BC是⊙O的直径,
∴∠BAC=90°,
∵AD平分∠BAC,
∴∠BAC=2∠BAD,
∵∠BOD=2∠BAD,
∴∠BOD=∠BAC=90°,
∵DP∥BC,
∴∠ODP=∠BOD=90°,
∴PD⊥OD,
∵OD是⊙O半径,
∴PD是⊙O的切线;
(2)∵PD∥BC,
∴∠ACB=∠P,
∵∠ACB=∠ADB,
∴∠ADB=∠P,
∵∠ABD+∠ACD=180°,∠ACD+∠DCP=180°,
∴∠DCP=∠ABD,
∴△ABD∽△DCP,
(3)∵BC是⊙O的直径,
∴∠BDC=∠BAC=90°,
在Rt△ABC中,BC==13cm,
∵AD平分∠BAC,
∴∠BAD=∠CAD,
∴∠BOD=∠COD,
∴BD=CD,
在Rt△BCD中,BD2+CD2=BC2,
∴BD=CD=BC=,
∵△ABD∽△DCP,
∴,
∴,
∴CP=16.9cm.
24.【解答】解:(1)把A(1,0)和C(0,3)代入y=x2+bx+c,
解得:b=﹣4,c=3,
∴二次函数的表达式为:y=x2﹣4x+3;
(2)令y=0,则x2﹣4x+3=0,
解得:x=1或x=3,
∴B(3,0),
∴BC=3,
点P在y轴上,当△PBC为等腰三角形时分三种情况进行讨论:如图1,
①当CP=CB时,PC=3,∴OP=OC+PC=3+3或OP=PC﹣OC=3﹣3
∴P1(0,3+3),P2(0,3﹣3);
②当BP=BC时,OP=OB=3,
∴P3(0,﹣3);
③当PB=PC时,
∵OC=OB=3
∴此时P与O重合,
∴P4(0,0);
综上所述,点P的坐标为:(0,3+3)或(0,3﹣3)或(0,﹣3)或(0,0);
(3)如图2,设A运动时间为t,由AB=2,得BM=2﹣t,则DN=2t,
∴S△MNB=×(2﹣t)×2t=﹣t2+2t=﹣(t﹣1)2+1,
即当M(2,0)、N(2,2)或(2,﹣2)时△MNB面积最大,最大面积是1.
声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布
日期:2020/4/1 13:32:14;用户:初中校园号;邮箱:wjwl@xyh.com;学号:24424282
备战中考数理化——中考数学模拟试卷 (39)(含答案): 这是一份备战中考数理化——中考数学模拟试卷 (39)(含答案),共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
备战中考数理化——中考数学模拟试卷 (28)(含答案): 这是一份备战中考数理化——中考数学模拟试卷 (28)(含答案),共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
备战中考数理化——中考数学模拟试卷 (21)(含答案): 这是一份备战中考数理化——中考数学模拟试卷 (21)(含答案),共20页。试卷主要包含了解答题等内容,欢迎下载使用。