高考数学一轮复习 专题7.5 数列的综合应用(讲)
展开高考数学一轮复习策略
1、揣摩例题。
课本上和老师讲解的例题,一般都具有一定的典型性和代表性。要认真研究,深刻理解,要透过“样板”,学会通过逻辑思维,灵活运用所学知识去分析问题和解决问题,特别是要学习分析问题的思路、解决问题的方法,并能总结出解题的规律。
2、精练习题
复习时不要搞“题海战术”,应在老师的指导下,选一些源于课本的变式题,或体现基本概念、基本方法的基本题,通过解题来提高思维能力和解题技巧,加深对所学知识的深入理解。在解题时,要独立思考,一题多思,一题多解,反复玩味,悟出道理。
3、加强审题的规范性
每每大考过后,总有同学抱怨没考好,纠其原因是考试时没有注意审题。审题决定了成功与否,不解决这个问题势必影响到高考的成败。那么怎么审题呢? 应找出题目中的已知条件 ;善于挖掘题目中的隐含条件 ;认真分析条件与目标的联系,确定解题思路 。
4、重视错题
“错误是最好的老师”,但更重要的是寻找错因,及时进行总结,三五个字,一两句话都行,言简意赅,切中要害,以利于吸取教训,力求相同的错误不犯第二次。
专题7.5 数列的综合应用
新课程考试要求 | 1.理解等差数列、等比数列的概念,掌握等差数列、等比数列的通项公式与前 n 项和公式及其应用. 2.了解等差数列与一次函数、等比数列与指数函数的关系. 3.会用数列的等差关系或等比关系解决实际问题. |
核心素养 | 本节涉及所有的数学核心素养:逻辑推理、数学运算、数学抽象、数学建模等. |
考向预测 | 1.根据数列的递推式或者通项公式确定基本量,选择合适的方法求和,进一步证明不等式 2.数列与函数、不等式相结合. 3.复习中注意: (1)灵活选用数列求和公式的形式,关注应用公式的条件; (2)熟悉分组求和法、裂项相消法及错位相减法; (3)数列求和与不等式证明、不等式恒成立相结合求解参数的范围问题. |
【知识清单】
知识点一.等差数列和等比数列比较
| 等差数列 | 等比数列 |
定义 | =常数 | =常数 |
通项公式 | ||
判定方法 | (1)定义法; (2)中项公式法:⇔为等差数列; (3)通项公式法:(为常数,)⇔ 为等差数列; (4)前n项和公式法:(为常数, )⇔ 为等差数列; (5) 为等比数列,且,那么数列 (,且)为等差数列 | (1)定义法 (2)中项公式法: ()⇔ 为等比数列 (3)通项公式法: (均是不为0的常数,)⇔为等比数列 (4) 为等差数列⇔(总有意义)为等比数列 |
性质 | (1)若,,,,且,则 (2) (3) ,…仍成等差数列 | (1)若,,,,且,则 (2) (3)等比数列依次每项和(),即 ,…仍成等比数列 |
前n项和 | 时,;当时,或. |
知识点二.数列求和
1. 等差数列的前和的求和公式:.
2.等比数列前项和公式
一般地,设等比数列的前项和是,当时,或;当时,(错位相减法).
3. 数列前项和
①重要公式:(1)
(2)
(3)
(4)
②等差数列中,;
③等比数列中,.
【考点分类剖析】
考点一 等差数列与等比数列的综合问题
【典例1】(2021·全国高三月考(文))已知是等差数列,,,且,,是等比数列的前3项.
(1)求数列,的通项公式;
(2)数列是由数列的项删去数列的项后仍按照原来的顺序构成的新数列,求数列的前20项的和.
【典例2】(2021·全国高三其他模拟(文))已知数列是公差不为零的等差数列,其前项和为,满足,且,,成等比数列.
(1)求数列的通项公式;
(2)若,求数列的前项和.
【总结提升】
等差数列、等比数列综合问题的解题策略
(1)分析已知条件和求解目标,为最终解决问题设置中间问题,例如求和需要先求出通项、求通项需要先求出首项和公差(公比)等,确定解题的顺序.
(2)注意细节:在等差数列与等比数列综合问题中,如果等比数列的公比不能确定,则要看其是否有等于1的可能,在数列的通项问题中第一项和后面的项能否用同一个公式表示等,这些细节对解题的影响也是巨大的.
【变式探究】
1. (浙江省杭州市第二中学2020届高三)已知等比数列的各项均为正数,且,,成等差数列,则( )
A. B. C. D.
2. (2017·全国高考真题(文))已知等差数列的前项和为,等比数列的前项和为,且,,.
(1)若,求的通项公式;
(2)若,求.
【易错提醒】
1.利用裂项相消法解决数列求和问题,容易出现的错误有两个方面:
(1)裂项过程中易忽视常数,如容易误裂为,漏掉前面的系数;
(2)裂项之后相消的过程中容易出现丢项或添项的问题,导致计算结果错误.
2.应用错位相减法求和时需注意:
(1)给数列和Sn的等式两边所乘的常数应不为零,否则需讨论;
(2)在转化为等比数列的和后,求其和时需看准项数,不一定为n.
考点二 数列与函数的综合
【典例3】(2020届浙江省名校新高考研究联盟(Z20联盟)高三上学期第一次联考)已知数列满足:,.则下列说法正确的是( )
A. B.
C. D.
【典例4】(2020·浙江高三专题练习)已知等比数列的公比为,且,数列满足,
.
(1)求数列的通项公式.
(2)规定:表示不超过的最大整数,如,.若,,记 求的值,并指出相应的取值范围.
【总结提升】
数列与函数的综合问题主要有以下两类:
①知函数条件,解决数列问题,此类问题一般是利用函数的性质、图象研究数列问题;
②已知数列条件,解决函数问题,解决此类问题一般要充分利用数列的范围、公式、求和方法对式子化简变形.
【变式探究】
1.(2021·中央民族大学附属中学高三三模)已知函数,其中,定义数列如下:,,
(1)当时,求的值;
(2)是否存在实数m,使构成公差不为0的等差数列?若存在,请求出实数m的值;若不存在,请说明理由;
(3)求证:当时,总能找到,使得.
2.(四川高考真题)设等差数列的公差为,点在函数的图象上().
(1)若,点在函数的图象上,求数列的前项和;
(2)若,函数的图象在点处的切线在轴上的截距为,求数列的前项和.
考点三 数列与不等式的综合
【典例5】(2021·宁波中学高三其他模拟)已知等差数列和等比数列,且满足,.
(1)求数列,的通项公式;
(2)设,,求证:.
【典例6】(2020届浙江省台州五校高三上学期联考)已知函数.
(Ⅰ)求方程的实数解;
(Ⅱ)如果数列满足,(),是否存在实数,使得对所有的都成立?证明你的结论.
(Ⅲ)在(Ⅱ)的条件下,设数列的前项的和为,证明:.
【总结提升】
1.数列型不等式的证明常用到“放缩法”,一是在求和中将通项“放缩”为“可求和数列”;二是求和后再“放缩”.
放缩法常见的放缩技巧有:
(1)<=.
(2)-<<-.
(3)2(-)<<2(-).
2.数列中不等式恒成立的问题
数列中有关项或前n项和的恒成立问题,往往转化为数列的最值问题;求项或前n项和的不等关系可以利用不等式的性质或基本不等式求解.
【变式探究】
1.(2020·山东高三下学期开学)已知数列满足.
(1)求数列的通项公式;
(2)设数列的前项和为,证明:.
2.(2021·浙江杭州市·杭州高级中学高三其他模拟)已知数列满足:,.
(1)若,,成等比数列,求q的值;
(2)若,求证:.
考点四 数列与充要条件
【典例7】(2020届浙江省宁波市鄞州中学高三下期初)已知等比数列的前项和为,则“”是“”的( )
A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件
【典例8】(2020·浙江高三)等差数列{an}的公差为d,a1≠0,Sn为数列{an}的前n项和,则“d=0”是“Z”的( )
A.充分不必要条件 B.必要不充分条件
C.充分必要条件 D.既不充分也不必要条件
【规律方法】
充要关系的几种判断方法
(1)定义法:若 ,则是的充分而不必要条件;若 ,则是的必要而不充分条件;若,则是的充要条件; 若 ,则是的既不充分也不必要条件.
(2)等价法:即利用与;与;与的等价关系,对于条件或结论是否定形式的命题,一般运用等价法.
(3) 集合关系法:从集合的观点理解,即若满足命题p的集合为M,满足命题q的集合为N,则M是N的真子集等价于p是q的充分不必要条件,N是M的真子集等价于p是q的必要不充分条件,M=N等价于p和q互为充要条件,M,N不存在相互包含关系等价于p既不是q的充分条件也不是q的必要条件
【变式探究】
1.(2020届浙江宁波市高三上期末)已知等差数列的公差为,前项和为,则“”是“”的( )
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
2.(2019·浙江高三期中)设,则“数列为等比数列”是“数列为等比数列”的
A.充分非必要条件 B.必要非充分条件
C.充要条件 D.既不充分也不必要条件
考点五 数列与实际问题
【典例9】(2021·黑龙江哈尔滨市·哈尔滨三中高三三模(文))复利是指一笔资金产生利息外,在下一个计息周期内,以前各计息周期内产生的利息也计算利息的计息方法,单利是指一笔资金只有本金计取利息,而以前各计息周期内产生的利息在下一个计息周期内不计算利息的计息方法.小闯同学一月初在某网贷平台贷款10000元,约定月利率为1.5%,按复利计算,从一月开始每月月底等额本息还款,共还款12次,直到十二月月底还清贷款,把还款总额记为x元.如果前十一个月因故不还贷款,到十二月月底一次还清,则每月按照贷款金额的1.525%,并且按照单利计算利息,这样的还款总额记为y元.则y-x的值为( )(参考数据:1.01512≈1.2)
A.0 B.1200 C.1030 D.900
【典例10】(上海高考真题)根据预测,某地第 个月共享单车的投放量和损失量分别为和(单位:辆),
其中,,第个月底的共享单车的保有量是前个月的
累计投放量与累计损失量的差.
(1)求该地区第4个月底的共享单车的保有量;
(2)已知该地共享单车停放点第个月底的单车容纳量(单位:辆). 设在某月底,共享单车保有量达到最大,问该保有量是否超出了此时停放点的单车容纳量?
【变式探究】
1.(2021·山东菏泽市·高三期末)某公司为一个高科技项目投入启动资金1000万元,已知每年可获利25%,但由于竞争激烈,每年年底需从利润中取出200万元资金进行科研、技术改造,方能保持原有利润的增长率,经过两年后该项目的资金为________万元,该公司经过______年该项目的资金可以达到或超过翻一番(即原来的2倍)的目标(,).
2. (2021·上海浦东新区·高三三模)流行性感冒是由流感病毒引起的急性呼吸道传染病.某市去年11月份曾发生流感,据统计,11月1日该市的新感染者有30人,以后每天的新感染者比前一天的新感染者增加50人.由于该市医疗部门采取措施,使该种病毒的传播得到控制,从11月日起每天的新感染者比前一天的新感染者减少20人.
(1)若,求11月1日至11月10日新感染者总人数;
(2)若到11月30日止,该市在这30天内的新感染者总人数为11940人,问11月几日,该市新感染者人数最多?并求这一天的新感染者人数.
专题7.5 数列的综合应用(讲+练)-备战高考数学大一轮复习核心考点精讲精练(新高考专用): 这是一份专题7.5 数列的综合应用(讲+练)-备战高考数学大一轮复习核心考点精讲精练(新高考专用),文件包含专题75数列的综合应用原卷版docx、专题75数列的综合应用解析版docx等2份试卷配套教学资源,其中试卷共56页, 欢迎下载使用。
新高考数学一轮复习讲练测专题7.5数列的综合应用(讲)(含解析): 这是一份新高考数学一轮复习讲练测专题7.5数列的综合应用(讲)(含解析),共24页。
2024届高考数学复习第一轮讲练测专题7.5 数列的综合应用 学生版: 这是一份2024届高考数学复习第一轮讲练测专题7.5 数列的综合应用 学生版,共6页。试卷主要包含了数列满足,已知数列的前项和为,且满足,在数列中,,且成等比数列,有下列三个条件等内容,欢迎下载使用。