高考数学一轮复习 专题6.2 平面向量的基本定理及坐标表示(讲)
展开高考数学一轮复习策略
1、揣摩例题。
课本上和老师讲解的例题,一般都具有一定的典型性和代表性。要认真研究,深刻理解,要透过“样板”,学会通过逻辑思维,灵活运用所学知识去分析问题和解决问题,特别是要学习分析问题的思路、解决问题的方法,并能总结出解题的规律。
2、精练习题
复习时不要搞“题海战术”,应在老师的指导下,选一些源于课本的变式题,或体现基本概念、基本方法的基本题,通过解题来提高思维能力和解题技巧,加深对所学知识的深入理解。在解题时,要独立思考,一题多思,一题多解,反复玩味,悟出道理。
3、加强审题的规范性
每每大考过后,总有同学抱怨没考好,纠其原因是考试时没有注意审题。审题决定了成功与否,不解决这个问题势必影响到高考的成败。那么怎么审题呢? 应找出题目中的已知条件 ;善于挖掘题目中的隐含条件 ;认真分析条件与目标的联系,确定解题思路 。
4、重视错题
“错误是最好的老师”,但更重要的是寻找错因,及时进行总结,三五个字,一两句话都行,言简意赅,切中要害,以利于吸取教训,力求相同的错误不犯第二次。
专题6.2 平面向量的基本定理及坐标表示
新课程考试要求 | 1.理解平面向量的基本定理及其意义,会用平面向量基本定理解决简单问题. 2.掌握平面向量的正交分解及其坐标表示. 3.掌握平面向量的加法、减法、数乘、数量积的坐标运算. |
核心素养 | 本节涉及所有的数学核心素养:逻辑推理(多例)、直观想象(多例)、数学运算(多例)等. |
考向预测 | (1)考查平面向量基本定理、坐标表示平面向量的加法、减法、数乘及数量积运算; (2)以考查向量的数量积、夹角、模、垂直的条件等问题为主,基本稳定为选择题或填空题,难度中等以下; (3)常常以平面图形为载体,借助于向量的坐标形式等考查共线、垂直等问题;也易同三角函数、解析几何等知识相结合,以工具的形式出现. (4) 理解坐标表示是基础,掌握坐标运算的方法是关键; (5)解答与平面几何、三角函数、解析几何等交汇问题时,注意运用数形结合的数学思想,通过建立平面直角坐标系,利用坐标运算解题. |
【知识清单】
1.平面向量基本定理
平面向量基本定理
如果是一平面内的两个不共线向量,那么对于这个平面内任意向量,有且只有一对实数,使.其中,不共线的向量叫做表示这一平面内所有向量的一组基底.
6.相反向量:长度相等且方向相反的向量.
2.平面向量的坐标运算
1. 平面向量的正交分解
把一个向量分解为两个互相垂直的向量,叫做把向量正交分解.
2.平面向量的坐标表示
(1)在平面直角坐标系中,分别取与x轴、y轴方向相同的两个单位向量作为基底,对于平面内的一个向量,由平面向量基本定理知,有且只有一对实数x、y,使得,这样,平面内的任一向量都可由x、y唯一确定,因此把叫做向量的坐标,记作,其中x叫做在x轴上的坐标,y叫做在y轴上的坐标.
(2)若,则.
3.平面向量的坐标运算
(1)若,则;
(2)若,则.
(3)设,则,.
3.平面向量共线的坐标表示
向量共线的充要条件的坐标表示
若,则⇔.
4.数量积的坐标运算
设a=(a1,a2),b=(b1,b2),则:
1.a·b=a1b1+a2b2.
2.a⊥ba1b1+a2b2=0.
3.|a|=.
4.cosθ==.(θ为a与b的夹角)
【考点分类剖析】
考点一 :平面向量基本定理及其应用
【典例1】(2020·全国高一单元测试)在平行四边形ABCD中,,,
(1)如图1,如果E,F分别是BC,DC的中点,试用分别表示.
(2)如图2,如果O是AC与BD的交点,G是DO的中点,试用表示.
【答案】(1),(2).
【解析】
(1)利用平面向量基本定理,结合平面向量线性运算性质、平行四边形的性质进行求解即可;
(2)利用平面向量基本定理,结合平面向量线性运算性质、平行四边形的性质进行求解即可.
【详解】
(1),
;
(2).
【典例2】(2017·全国高考真题(理))在矩形ABCD中,AB=1,AD=2,动点P在以点C为圆心且与BD相切的圆上.若= + ,则+的最大值为( )
A.3 B.2 C. D.2
【答案】A
【解析】如图所示,建立平面直角坐标系.
设,
易得圆的半径,即圆C的方程是,
,若满足,
则 ,,所以,
设,即,点在圆上,
所以圆心到直线的距离,即,解得,
所以的最大值是3,即的最大值是3,故选A.
【典例3】(2019·山东高考模拟(文))如图,在中,,是上一点,若则实数的值为________.
【答案】
【解析】
由题意及图,,
又,所以,∴(1﹣m),
又t,所以,解得m,t,
故答案为:.
【总结提升】
1.用平面向量基本定理解决问题的一般思路是:先选择一组基底,再用该基底表示向量,其实质就是利用平行四边形法则或三角形法则进行向量的加减运算和数乘运算.
2.特别注意基底的不唯一性:
只要两个向量不共线,就可以作为平面的一组基底,对基底的选取不唯一,平面内任意向量都可被这个平面的一组基底线性表示,且在基底确定后,这样的表示是唯一的.
【变式探究】
1.(2020·烟台市教育科学研究院高一期末)在△中,为边上的中线,为的中点,则( )
A. B.
C. D.
【答案】A
【解析】
分析:首先将图画出来,接着应用三角形中线向量的特征,求得,之后应用向量的加法运算法则-------三角形法则,得到,之后将其合并,得到,下一步应用相反向量,求得,从而求得结果.
详解:根据向量的运算法则,可得
,
所以,故选A.
2.(2019·江西高考模拟(理))如图所示,矩形的对角线相交于点,为的中点,若,则等于( ).
A. B. C. D.
【答案】A
【解析】
由平面向量基本定理,化简
,所以,即,
故选:A.
3.(2021·全国高三其他模拟(理))在平行四边形中,点为边的中点,,则________.
【答案】
【解析】
找一组基向量分别表示出,再用待定系数法即可求得.
【详解】
,
又因为,所以,解得所以.
故答案为:
【易错提醒】
平面向量基本定理的实质及解题思路
(1)应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算.
(2)用向量基本定理解决问题的一般思路是先选择一组基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决.
考点二:平面向量的坐标运算
【典例4】(2021·北京首都师大二附高一期末)在平面直角坐标系中,已知两点A(cos80°,sin80°),B(cos20°,sin20°),则的值是( )
A. B. C. D.1
【答案】D
【解析】
由坐标知,利用模长公式求得模长,结合三角函数两角差的余弦公式求得结果.
【详解】
由A,B坐标知,,
则
故选:D
【典例5】(2020·天津滨海新·高三月考)如图,,点由射线、线段及的延长线围成的阴影区域内(不含边界).且,则实数对可以是( )
A. B. C. D.
【答案】A
【解析】
根据平面向量基本定理和平行四边形法则可知:
若取,则,点在阴影区域内,A正确;
若取,则,点在直线的上方,B错误;
若取,则,点在直线的下方,C错误;
若取,则,点在射线上,D错误,
故选:A.
【总结提升】
平面向量坐标运算的技巧
(1)向量的坐标运算主要是利用向量的加、减、数乘运算的法则来进行求解,若已知有向线段两端点的坐标,则应先求向量的坐标.要注意点的坐标和向量的坐标之间的关系,一个向量的坐标等于向量终点的坐标减去始点的坐标.
(2)解题过程中,常利用向量相等则其坐标相同这一原则,通过列方程(组)来进行求解.
【变式探究】
1.(2019·吉林高考模拟(理))已知向量,其中,则的最小值为( )
A.1 B.2 C. D.3
【答案】A
【解析】
因为,
所以,
因为,所以,故的最小值为.
故选A
2.(2020·上海高二课时练习)已知三点共线,则,则______,______.
【答案】3
【解析】
由,可得,
因为,即,
可得,解得.
故答案为:,.
考点三:平面向量共线的坐标表示
【典例6】(2018·全国高考真题(文))已知向量,,.若,则________.
【答案】
【解析】
由题可得
,即
故答案为
【典例7】(2020·桂阳县第二中学期中)已知、、,,.
(1)求点、及向量的坐标;
(2)求证:.
【答案】(1),,(2)证明见解析
【解析】
(1)设点,即,解得: ,故
设点,即,解得,故
(2),,故
【规律方法】
平面向量共线的坐标表示问题的常见类型及解题策略
(1)利用两向量共线的条件求向量坐标.一般地,在求与一个已知向量a共线的向量时,可设所求向量为λa(λ∈R),然后结合其他条件列出关于λ的方程,求出λ的值后代入λa即可得到所求的向量.
(2)利用两向量共线求参数.如果已知两向量共线,求某些参数的取值时,利用“若a=(x1,y1),b=(x2,y2),则a∥b的充要条件是x1y2=x2y1”解题比较方便.
【变式探究】
1.(2021·江苏省镇江第一中学高一期中)设向量,,,且,则( )
A. B. C. D.
【答案】D
【解析】
先利用向量的坐标运算求出,再根据向量平行的坐标表示即可求出.
【详解】
向量(1,1),(﹣1,3),(2,1),
所以(1+λ,1﹣3λ),
又()∥,
所以,2×(1﹣3λ)﹣1×(1+λ)=0,解得λ.
故选:D
2.【多选题】(2020·山东诸城·高一期中)已知,,则以下结论正确的是( )
A.若,则 B.若,则
C.若,则 D.的最小值为
【答案】BD
【解析】
,则.
对于A选项,若,则,所以,或,A选项错误;
对于B选项,若,则,,,则,,
B选项正确;
对于C选项,若,且,则,或,C选项错误;
对于D选项,由向量模的三角不等式可得,D选项正确.
故选:BD.
考点四: 平面向量数量积的坐标运算
【典例8】(2020·天津高考真题)如图,在四边形中,,,且,则实数的值为_________,若是线段上的动点,且,则的最小值为_________.
【答案】
【解析】
,,,
,
解得,
以点为坐标原点,所在直线为轴建立如下图所示的平面直角坐标系,
,
∵,∴的坐标为,
∵又∵,则,设,则(其中),
,,
,
所以,当时,取得最小值.
故答案为:;.
【典例9】(2021·北京高考真题),,,则_______;_______.
【答案】0 3
【解析】
根据坐标求出,再根据数量积的坐标运算直接计算即可.
【详解】
,
,,
.
故答案为:0;3.
【规律方法】
1.已知向量a,b的坐标,利用数量积的坐标形式求解.
设a=(a1,a2),b=(b1,b2),则a·b=a1b1+a2b2.
2.通过建立平面直角坐标系,利用数量积的坐标形式计算.
【变式探究】
1. (2019·天津高考真题(理)) 在四边形中,, , , ,点在线段的延长线上,且,则__________.
【答案】.
【解析】
建立如图所示的直角坐标系,则,.
因为∥,,所以,
因为,所以,
所以直线的斜率为,其方程为,
直线的斜率为,其方程为.
由得,,
所以.
所以.
2.(2020届浙江绍兴市柯桥区高三上期末)已知正三角形的边长为4,是平面内一点,且满足,则的最大值是______,最小值是______.
【答案】不存在
【解析】
设正三角形的外接圆为,则的直径,
,
如图以为坐标原点,以为轴建立平面直角坐标系,
,则点在的优弧上,
设,
又,
,
,
,则,
则的最大值不存在,最小值是.
故答案为:最大值不存在,最小值是.
考点五 平面向量的夹角问题
【典例10】(2019·全国高考真题(文))已知向量,则___________.
【答案】
【解析】
.
【典例11】(2021·全国高三其他模拟(文))已知向量,,,,___________.
【答案】
【解析】
利用向量的坐标运算求出,进而求出,,结合向量的数量积公式即可求解.
【详解】
,
又,
利用向量的数量积公式可知
故答案为:
【总结提升】
向量夹角问题的解答方法:
(1)当a,b是非坐标形式时,求a与b的夹角θ,需求出a·b及|a|,|b|或得出它们之间的关系;
(2)若已知a=(x1,y1)与b=(x2,y2),则cos〈a,b〉=.
提醒:〈a,b〉∈[0,π].
【变式探究】
1.(2020·江苏镇江市·高一月考)已知向量,则与有夹角为__________.
【答案】
【解析】
利用平面向量的夹角的坐标公式直接求解即可.
【详解】
因为,
所以,
因为,所以.
故答案为:.
2.(2021·江西省万载中学高一期末(文))如图,已知中,,,设.
(1)将用表示;
(2)求与的夹角的余弦值.
【答案】(1);(2).
【解析】
(1)根据向量的加法运算进行表示即可.
(2)先计算,然后计算,最后根据向量的夹角公式计算即可.
【详解】
(1)
(2)
考点六 平面向量的模的问题
【典例12】(2019·全国高考真题(文))已知向量a=(2,3),b=(3,2),则|a–b|=( )
A. B.2
C.5 D.50
【答案】A
【解析】
由已知,,
所以,
故选A
【典例13】(2021·江西新余市·高一期末(理))已知平面向量,,且,,向量满足,则的最小值为___________.
【答案】
【解析】
先根据平面向量数量积的定义求出夹角,然后根据平面向量的加减法作出示意图,进而求出和,进而根据图形得出点C的几何意义,最后求出最值.
【详解】
∵,,而,,
∴,∴,,如图所示,
若,,,,则,,
∴在以为圆心,2为半径的圆上,若,则,
∴问题转化为求在圆上哪一点时,使最小,又,
∴当且仅当,,三点共线且时,最小为.
【规律方法】
平面向量模问题的类型及求解方法
(1)求向量模的常用方法
①若向量a是以坐标形式出现的,求向量a的模可直接利用公式|a|=.
②若向量a,b是以非坐标形式出现的,求向量a的模可应用公式|a|2=a2=a·a,或|a±b|2=(a±b)2=a2±2a·b+b2,先求向量模的平方,再通过向量数量积的运算求解.
(2)求向量模的最值(范围)的方法
①代数法:把所求的模表示成某个变量的函数,再用求最值的方法求解.
②几何法(数形结合法):弄清所求的模表示的几何意义,结合动点表示的图形求解.
(3)利用向量夹角公式、模公式,可将有关角度问题、线段长问题转化为向量的数量积来解决.
【变式探究】
1.(2020·浙江镇海中学高三3月模拟)已知,,是平面内三个单位向量,若,则的最小值( )
A. B. C. D.5
【答案】A
【解析】
设,,,则,从而
,等号可取到.
故选:A
2.(2021·四川成都市·树德中学高一月考)已知直角梯形中,,,,,是腰上的动点,则的最小值为______.
【答案】7
【解析】
以为轴的正方向建立直角坐标系,设,然后表示出,然后可得答案.
【详解】
以为轴的正方向建立直角坐标系,如图所示:
设,
则
,当时取得最小值7
故答案为:7
考点七 平面向量垂直的条件
【典例14】(2020·全国高考真题(文))已知单位向量,的夹角为60°,则在下列向量中,与垂直的是( )
A. B. C. D.
【答案】D
【解析】
由已知可得:.
A:因为,所以本选项不符合题意;
B:因为,所以本选项不符合题意;
C:因为,所以本选项不符合题意;
D:因为,所以本选项符合题意.
故选:D.
【典例15】(2020·全国高考真题(文))设向量,若,则______________.
【答案】5
【解析】
根据向量垂直,结合题中所给的向量的坐标,利用向量垂直的坐标表示,求得结果.
【详解】
由可得,
又因为,
所以,
即,
故答案为:5.
【总结提升】
平面向量垂直问题的类型及求解方法
(1)判断两向量垂直
第一,计算出这两个向量的坐标;
第二,根据数量积的坐标运算公式,计算出这两个向量的数量积为0即可.
(2)已知两向量垂直求参数
根据两个向量垂直的充要条件,列出相应的关系式,进而求解参数.
【变式探究】
1.(2018·江苏高考真题)在平面直角坐标系中,为直线上在第一象限内的点,,以为直径的圆与直线交于另一点.若,则点的横坐标为________.
【答案】3
【解析】
设,则由圆心为中点得易得,与联立解得点的横坐标所以.所以,
由得或,
因为,所以
2.(2019·北京高考真题(文))已知向量=(-4,3),=(6,m),且,则m=__________.
【答案】8.
【解析】
向量
则.
专题6.2 等差数列-2024年高考数学一轮复习《考点•题型 •技巧》精讲与精练: 这是一份专题6.2 等差数列-2024年高考数学一轮复习《考点•题型 •技巧》精讲与精练,文件包含62等差数列原卷版docx、62等差数列解析版docx等2份试卷配套教学资源,其中试卷共33页, 欢迎下载使用。
新高考数学一轮复习讲练测专题6.2平面向量的基本定理及坐标表示(讲)(含解析): 这是一份新高考数学一轮复习讲练测专题6.2平面向量的基本定理及坐标表示(讲)(含解析),共21页。
高考数学一轮复习 专题6.2 平面向量的基本定理及坐标表示(练): 这是一份高考数学一轮复习 专题6.2 平面向量的基本定理及坐标表示(练),文件包含专题62平面向量的基本定理及坐标表示练教师版docx、专题62平面向量的基本定理及坐标表示练学生版docx等2份试卷配套教学资源,其中试卷共24页, 欢迎下载使用。