第二章 相交线与平行线B卷压轴题考点训练-七年级数学下册压轴题攻略(北师大版,成都专用)
展开第二章 相交线与平行线B卷压轴题考点训练
1.如图,AB∥EF,设∠C=90°,那么x,y,z的关系式为______.
2.如图,已知,直线分别与相交于两点,现把一块含角的直角三角中尺按如图所示的位置摆放.若,则___________.
3.如图,∠1=70°,直线a平移后得到直线b,则∠2-∠3=__________.
4.如图,AB∥GF,则∠ABC+∠C+∠D+∠E+∠EFG= .若∠ABH=30°,∠MFG=28°,则∠H+∠L+∠M= .
5.如图,已知AB//CD,BE、DE的交点为E,现作如下操作:第一次操作,分别作∠ABE和∠CDE的平分线,交点为E1,第二次操作,分别作∠ABE1和∠CDE1的平分线,交点为E2,第三次操作,分别作∠ABE2和∠CDE2的平分线,交点为E3,...第n(n≥2)次操作,分别作∠ABEn﹣1和∠CDEn﹣1的平分线,交点为En,若∠En=α度,则∠BED=___度.
6.图1是一张足够长的纸条,其中,点、分别在,上,记.如图2,将纸条折叠,使与重合,得折痕;如图3,将纸条展开后再折叠,使与重合,得折痕:将纸条展开后继续折叠,使与重合,得折痕;...依此类推,第次折叠后, _______(用含和的代数式表示).
7.实验证明,平面镜反射光线的规律是:射到平面镜上的光线和被反射出的光线与平面镜所夹的锐角相等.
(1)如图,一束光线射到平面镜上,被反射到平面镜上,又被反射,若被反射出的光线与光线平行,且,则_________,________.
(2)在(1)中,若,则_______;若,则________;
(3)由(1)、(2),请你猜想:当两平面镜、的夹角________时,可以使任何射到平面镜上的光线,经过平面镜、的两次反射后,入射光线与反射光线平行.请说明理由.
8.已知:如图,直线a∥b,直线c与直线a、b分别相交于C、D两点,直线d与直线a、b分别相交于A、B两点.
(1)如图1,当点P在线段AB上(不与A、B两点重合)运动时,∠1、∠2、∠3之间有怎样的大小关系?请说明理由;
(2)如图2,当点P在线段AB的延长线上运动时,∠1、∠2、∠3之间的大小关系为________;
(3)如图3,当点P在线段BA的延长线上运动时,∠1、∠2、∠3之间的大小关系为________.
9.(1)如图①,,则_________.
如图②,,则___________.
如图③,,则___________.
如图④,,则___________.
从上述结论中你发现了什么规律?请在图②,图③,图④中选一个证明你的结论.
(2)如图⑤,,则______________.
(3)利用上述结论解决问题:如图已知,和的平分线相交于,,求的度数.
10.如图,已知AB∥CD,C在D的右侧,BE平分∠ABC,DE平分∠ADC,BE、DE所在直线交于点E,∠ADC =70°.
(1)求∠EDC的度数;(2)若∠ABC =n°,求∠BED的度数(用含n的代数式表示);
(3)将线段BC沿DC方向平移, 使得点B在点A的右侧,其他条件不变,画出图形并判断∠BED的度数是否改变,若改变,求出它的度数(用含n的式子表示),不改变,请说明理由.
11.在数学综合实践活动课上,老师让同学们以“两条平行直线,和一块含45°的直角三角板()”为背景,开展数学探究活动.如图,将三角板的顶点放置在直线上.
(1)如图①,在边上任取一点(不同于点,),过点作,且,求的度数;
(2)如图②,过点作,请探索并说明与之间的数量关系;
(3)将三角板绕顶点旋转,过点作,并保持点在直线的上方.在旋转过程中,探索与之间的数量关系,并说明理由.
12.已知,点B为平面内一点,于B.
(1)如图,直接写出和之间的数量关系.
(2)如图,过点B作于点D,求证:.
(3)如图,在(2)问的条件下,点E,F在DM上,连接BE,BF,CF,BF那平分,BE平分,若,,求的度数.
13.已知直线AB∥CD,EF是截线,点M在直线AB、CD之间.
(1)如图1,连接GM,HM.求证:;
(2)如图2,在的角平分线上取两点M、Q,使得.请直接写出与之间的数量关系;
(3)如图3,若射线GH平分,点N在MH的延长线上,连接GN,若,,求的度数.
14.已知点A,B,O在一条直线上,以点O为端点在直线的同一侧作射线,,,使.
(1)如图①,若平分,则的度数是_______;
(2)如图②,将绕点O按逆时针方向转动到某个位置,且在内部时,
①若,求的度数;
②若(n为正整数),直接用含n的代数式表示.
15.如图①.已知,点为平面内一点,于点,过点作于点,设.
(1)若,求的度数;
(2)如图②,若点、在上,连接、、,使得平分、平分,求的度数;
(3)如图③,在(2)问的条件下,若平分,且,求的度数.