![2023年中考数学三轮冲刺《解答题》强化练习卷七(含答案)01](http://img-preview.51jiaoxi.com/2/3/14047062/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2023年中考数学三轮冲刺《解答题》强化练习卷七(含答案)02](http://img-preview.51jiaoxi.com/2/3/14047062/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2023年中考数学三轮冲刺《解答题》强化练习卷七(含答案)03](http://img-preview.51jiaoxi.com/2/3/14047062/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
2023年中考数学三轮冲刺《解答题》强化练习卷七(含答案)
展开2023年中考数学三轮冲刺《解答题》强化练习卷七
1.解不等式组:.
2.某校为了解七、八年级学生一分钟跳绳情况,从这两个年级随机抽取50名学生进行测试,并对测试成绩(一分钟跳绳次数)进行整理、描述和分析,下面给出了部分信息:
七年级学生一分钟跳绳成绩(数据分7组:60≤x<80,80≤x<100,…,180≤x<200)在100≤x<120这一组的是:
根据以上信息,回答下列问题:
(1)表中a= ;
(2)在这次测试中,七年级甲同学的成绩122次,八年级乙同学的成绩125次,他们的测试成绩,在各自年级所抽取的50名同学中,排名更靠前的是 (填“甲”或“乙”),理由是 .
(3)该校七年级共有500名学生,估计一分钟跳绳不低于116次的有多少人?
3.市某楼盘准备以每平方米6 000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,房地产开发商为了加快资金周转,对价格经过两次下调后,决定以每平方米4 860元的均价开盘销售.
(1)求平均每次下调的百分率.
(2)某人准备以开盘价均价购买一套100平方米的住房,开发商给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,一次性送装修费每平方米80元,试问哪种方案更优惠?
4.如图,直线y1=﹣x+4,y2=x+b都与双曲线y=交于点A(1,m),这两条直线分别与x轴交于B,C两点.
(1)求y与x之间的函数关系式;
(2)直接写出当x>0时,不等式x+b>的解集;
(3)若点P在x轴上,连接AP把△ABC的面积分成1:3两部分,求此时点P的坐标.
5.△ABC和△DEF都是边长为6cm的等边三角形,且A、D、B、F在同一直线上,连接CD、BF.
(1)求证:四边形BCDE是平行四边形;
(2)若AD=2cm,△ABC沿着AF的方向以每秒1cm的速度运动,设△ABC运动的时间为t秒.
(a)当t为何值时,平行四边形BCDE是菱形?说明理由;
(b)平行四边形BCDE有可能是矩形吗?若有可能,求出t的值,并求出矩形的面积;若不可能,说明理由.
6.自开展“全民健身运动”以来,喜欢户外步行健身的人越来越多,为方便群众步行健身,某地政府决定对一段如图1所示的坡路进行改造.如图2所示,改造前的斜坡AB=200米,坡度为1:;将斜坡AB的高度AE降低AC=20米后,斜坡AB改造为斜坡CD,其坡度为1:4.求斜坡CD的长.(结果保留根号)
7.如图,⊙O的直径AB=4,点C为⊙O上的一个动点,连接OC,过点A作⊙O的切线,与BC的延长线交于点D,点E为AD的中点,连接CE.
(1)求证:CE是⊙O的切线;
(2)填空:
①当CE= 时,四边形AOCE为正方形;
②当CE= 时,△CDE为等边三角形.
8.如图,在平面直角坐标系中,二次函数y=﹣0.25x2+bx+c的图象与坐标轴交于A、B、C三点,其中点A的坐标为(0,8),点B的坐标为(﹣4,0).
(1)求该二次函数的表达式及点C的坐标;
(2)点D的坐标为(0,4),点F为该二次函数在第一象限内图象上的动点,连接CD、CF,以CD、CF为邻边作平行四边形CDEF,设平行四边形CDEF的面积为S.
①求S的最大值;
②在点F的运动过程中,当点E落在该二次函数图象上时,请直接写出此时S的值.
0.参考答案
1.解:,
由①得,x≥1,由②得,x<6.5,
故不等式组的解集为1≤x<6.5.
2.解:(1)∵七年级50名学生成绩的中位数是第25、26个数据的平均数,
而第25、26个数据分别是117、119,
∴中位数a==118,故答案为:118;
(2)∴在各自年级所抽取的50名同学中,排名更靠前的是甲,
理由是甲的成绩122超过中位数118,乙的成绩125低于其中位数126,
故答案为:甲,甲的成绩122超过中位数118,乙的成绩125低于其中位数126.
(3)估计一分钟跳绳不低于116次的有500×=270(人).
3.解:(1)设平均每次下调的百分率为x,
则6000(1-x)2=4860,
解得:x1=0.1=10%, x2=1.9(舍).
故平均每周下调的百分率为10%.
(2)方案1优惠:4860×100×(1-0.98)=9720(元);
方案2可优惠:80×100=8000(元).
故方案1优惠.
4.解:(1)把A(1,m)代入y1=﹣x+4,可得m=﹣1+4=3,
∴A(1,3),
把A(1,3)代入双曲线y=,可得k=1×3=3,
∴y与x之间的函数关系式为:y=;
(2)∵A(1,3),
∴当x>0时,不等式x+b>的解集为:x>1;
(3)y1=﹣x+4,令y=0,则x=4,
∴点B的坐标为(4,0),
把A(1,3)代入y2=x+b,可得3=+b,
∴b=,∴y2=x+,
令y=0,则x=﹣3,即C(﹣3,0),
∴BC=7,
∵AP把△ABC的面积分成1:3两部分,
∴CP=BC=,或BP=BC=,
∴OP=3﹣=,或OP=4﹣=,
∴P(﹣,0)或(,0).
5.证明:(1)∵△ABC和△DEF是两个边长为6cm的等边三角形,
∴BC=DE,∠ABC=∠FDE=60°,
∴BC∥DE,
∴四边形BCDE是平行四边形;
(2)(a)当t=2秒时,▱BCDE是菱形,此时A与D重合,
∴CD=DE,
∴▱ADEC是菱形;
(b)若平行四边形BCDE是矩形,则∠CDE=90°,
如图所示:∴∠CDB=90°﹣60°=30°
同理∠DCA=30°=∠CDB,
∴AC=AD,同理FB=EF,
∴F与B重合,
∴t=(6+2)÷1=8秒,
∴当t=8秒时,平行四边形BCDE是矩形.
6.解:
∵∠AEB=90°,AB=200,坡度为1:,∴tan∠ABE=,
∴∠ABE=30°,∴AE=AB=100,
∵AC=20,∴CE=80,
∵∠CED=90°,斜坡CD的坡度为1:4,
∴,即,解得,ED=320,
∴CD==米,
答:斜坡CD的长是米.
7. (1)证明:如图,连接AC、OE.
∵AD为⊙O的切线,
∴∠OAE=90°.
∵AB为⊙O的直径,
∴∠ACB=90°,
∴△ACD是直角三角形.
∵点E是AD的中点,
∴EA=EC.
又OA=OC,OE=OE,
∴△OCE≌△OAE,
∴∠OAE=∠OCE=90°,即OC⊥CE,
∴CE是⊙O的切线.
(2)① 2;②.
8.解:(1)把A(0,8),B(﹣4,0)代入y=﹣x2+bx+c
得,解得,
所以抛物线的解析式为y=﹣5x2+x+8;
当y=0时,﹣x2+x+8=0,解得x1=﹣4,x2=8,
所以C点坐标为(8,0);
(2)①连结OF,如图,设F(t,﹣t2+t+8),
∵S四边形OCFD=S△CDF+S△OCD=S△ODF+S△OCF,
∴S△CDF=S△ODF+S△OCF﹣S△OCD=×4×t+×8×(﹣t2+t+8)﹣×4×8
=﹣t2+6t+16=﹣(t﹣3)2+25,
当t=3时,△CDF的面积有最大值,最大值为25,
∵四边形CDEF为平行四边形,∴S的最大值为50;
②∵四边形CDEF为平行四边形,∴CD∥EF,CD=EF,
∵点C向左平移8个单位,再向上平移4个单位得到点D,
∴点F向左平移8个单位,再向上平移4个单位得到点E,
即E(t﹣8,﹣t2+t+12),
∵E(t﹣8,﹣t2+t+12)在抛物线上,
∴﹣(t﹣8)2+t﹣8+8=﹣t2+t+12,解得t=7,
当t=7时,S△CDF=﹣(7﹣3)2+25=9,
∴此时S=2S△CDF=18.
中考数学三轮冲刺《解答题》强化练习09(含答案): 这是一份中考数学三轮冲刺《解答题》强化练习09(含答案),共10页。
中考数学三轮冲刺《解答题》强化练习08(含答案): 这是一份中考数学三轮冲刺《解答题》强化练习08(含答案),共9页。试卷主要包含了B两点,与y轴相交于点C.等内容,欢迎下载使用。
中考数学三轮冲刺《解答题》强化练习06(含答案): 这是一份中考数学三轮冲刺《解答题》强化练习06(含答案),共9页。