高中数学高考2018高考数学(文)大一轮复习习题 第三章 三角函数、解三角形 课时跟踪检测 (十六) 任意角和弧度制及任意角的三角函数 Word版含答案
展开这是一份高中数学高考2018高考数学(文)大一轮复习习题 第三章 三角函数、解三角形 课时跟踪检测 (十六) 任意角和弧度制及任意角的三角函数 Word版含答案,共5页。
课时跟踪检测 (十六) 任意角和弧度制及任意角的三角函数
一抓基础,多练小题做到眼疾手快
1.已知点P(tan α,cos α)在第三象限,则角α的终边在( )
A.第一象限 B.第二象限
C.第三象限 D.第四象限
解析:选B 因为点P在第三象限,所以所以α的终边在第二象限,故选B.
2.设角α终边上一点P(-4a,3a)(a<0),则sin α的值为( )
A. B.-
C. D.-
解析:选B 设点P与原点间的距离为r,
∵P(-4a,3a),a<0,
∴r==|5a|=-5a.
∴sin α==-.
3.若一圆弧长等于其所在圆的内接正三角形的边长,则其圆心角α(0<α<π)的弧度数为( )
A. B.
C. D.2
解析:选C 设圆半径为r,则其内接正三角形的边长为r,所以r=αr,
所以α=.
4.在直角坐标系中,O是原点,A(,1),将点A绕O逆时针旋转90°到B点,则B点坐标为__________.
解析:依题意知OA=OB=2,∠AOx=30°,∠BOx=120°,
设点B坐标为(x,y),所以x=2cos 120°=-1,y=2sin 120°=,即B(-1,).
答案:(-1,)
5.已知角θ的顶点为坐标原点,始边为x轴的非负半轴,若P(4,y)是角θ终边上一点,且sin θ=-,则y=________.
解析:因为sin θ==-,
所以y<0,且y2=64,所以y=-8.
答案:-8
二保高考,全练题型做到高考达标
1.将表的分针拨快10分钟,则分针旋转过程中形成的角的弧度数是( )
A. B.
C.- D.-
解析:选C 将表的分针拨快应按顺时针方向旋转,为负角.故A、B不正确,又因为拨快10分钟,故应转过的角为圆周的,即为-×2π=-.
2.(2016·福州一模)设α是第二象限角,P(x,4)为其终边上的一点,且cos α=x,则tan α=( )
A. B.
C.- D.-
解析:选D 因为α是第二象限角,所以cos α=x<0,
即x<0.又cos α=x=.
解得x=-3,所以tan α==-.
3.已知角α终边上一点P的坐标是(2sin 2,-2cos 2),则sin α等于( )
A.sin 2 B.-sin 2
C.cos 2 D.-cos 2
解析:选D 因为r==2,由任意三角函数的定义,得sin α==-cos 2.
4.设θ是第三象限角,且=-cos ,则是( )
A.第一象限角 B.第二象限角
C.第三象限角 D.第四象限角
解析:选B 由θ是第三象限角,知为第二或第四象限角,∵=-cos ,∴cos <0,综上知为第二象限角.
5.集合中的角所表示的范围(阴影部分)是( )
解析:选C 当k=2n(n∈Z)时,2nπ+≤α≤2nπ+,此时α表示的范围与≤α≤表示的范围一样;当k=2n+1(n∈Z)时,2nπ+π+≤α≤2nπ+π+,此时α表示的范围与π+≤α≤π+表示的范围一样.
6.与2 017°的终边相同,且在0°~360°内的角是________.
解析:∵2 017°=217°+5×360°,
∴在0°~360°内终边与2 017°的终边相同的角是217°.
答案:217°
7.已知α是第二象限的角,则180°-α是第________象限的角.
解析:由α是第二象限的角可得90°+k·360°<α<180°+k·360°(k∈Z),则180°-(180°+k·360°)<180°-α<180°-(90°+k·360°)(k∈Z),即-k·360°<180°-α<90°-k·360°(k∈Z),所以180°-α是第一象限的角.
答案:一
8.一扇形是从一个圆中剪下的一部分,半径等于圆半径的,面积等于圆面积的,则扇形的弧长与圆周长之比为________.
解析:设圆的半径为r,则扇形的半径为,记扇形的圆心角为α,
则=,
∴α=.
∴扇形的弧长与圆周长之比为==.
答案:
9.在(0,2π)内,使sin x>cos x成立的x的取值范围为____________________.
解析:如图所示,找出在(0,2π)内,使sin x=cos x的x值,sin=cos=,sin=cos=-.根据三角函数线的变化规律标出满足题中条件的角x∈.
答案:
10.已知扇形AOB的周长为8.
(1)若这个扇形的面积为3,求圆心角的大小;
(2)求这个扇形的面积取得最大值时圆心角的大小和弦长AB.
解:设扇形AOB的半径为r,弧长为l,圆心角为α,
(1)由题意可得
解得或
∴α==或α==6.
(2)法一:∵2r+l=8,
∴S扇=lr=l·2r≤2=×2=4,
当且仅当2r=l,即α==2时,扇形面积取得最大值4.
∴圆心角α=2,弦长AB=2sin 1×2=4sin 1.
法二:∵2r+l=8,
∴S扇=lr=r(8-2r)=r(4-r)=-(r-2)2+4≤4,
当且仅当r=2,即α==2时,扇形面积取得最大值4.
∴弦长AB=2sin 1×2=4sin 1.
三上台阶,自主选做志在冲刺名校
1.若α是第三象限角,则下列各式中不成立的是( )
A.sin α+cos α<0 B.tan α-sin α<0
C.cos α-tan α<0 D.tan αsin α<0
解析:选B ∵α是第三象限角,∴sin α<0,cos α<0,tan α>0,则可排除A、C、D.
2.已知角α=2kπ-(k∈Z),若角θ与角α的终边相同,则y=++的值为( )
A.1 B.-1
C.3 D.-3
解析:选B 由α=2kπ-(k∈Z)及终边相同的概念知,角α的终边在第四象限,又角θ与角α的终边相同,所以角θ是第四象限角,所以sin θ<0,cos θ>0,tan θ<0.
所以y=-1+1-1=-1.
3.已知sin α<0,tan α>0.
(1)求α角的集合;
(2)求终边所在的象限;
(3)试判断 tansin cos的符号.
解:(1)由sin α<0,知α在第三、四象限或y轴的负半轴上;
由tan α>0, 知α在第一、三象限,故α角在第三象限,
其集合为.
(2)由2kπ+π<α<2kπ+,k∈Z,
得kπ+<<kπ+,k∈Z,
故终边在第二、四象限.
(3)当在第二象限时,tan <0,
sin >0, cos <0,
所以tan sin cos取正号;
当在第四象限时, tan<0,
sin<0, cos>0,
所以 tansincos也取正号.
因此,tansin cos 取正号.
相关试卷
这是一份高中数学高考2018高考数学(文)大一轮复习习题 第三章 三角函数、解三角形 课时跟踪检测 (十九) 函数y=Asin(ωx+φ)的图象及三角函数模型的简单应用 Word版含答案,共9页。
这是一份高中数学高考2018高考数学(文)大一轮复习习题 第三章 三角函数、解三角形 课时跟踪检测 (二十三) 正弦定理和余弦定理的应用 Word版含答案,共8页。
这是一份高中数学高考2018高考数学(文)大一轮复习习题 第三章 三角函数、解三角形 课时跟踪检测 (十七) 同角三角函数的基本关系与诱导公式 Word版含答案,共6页。试卷主要包含了求值等内容,欢迎下载使用。