初中数学20.2 函数教案
展开函数
1、教学内容
义务教育教科书八年级下册第二十章第2节函数第一课时。
2、知识背景分析
本节课在于初步认识函数的概念,在上节课学习了常量和变量的概念后,教科书又继续利用收入报表和气温变化等问题对变化的对应关系进一步诠释和补充,分别利用了表格、图像、解析式等方式,这也为后面的函数表示埋下了伏笔。教材给出了函数的一般概念以及自变量的概念,并给出了函数最本质和朴素的两层意思:(1)联系变化;(2)单值对应。
3、学情分析
教学的对象是八年级学生,他们已经有了变量与常量的概念,对涉及到的生活中的问题也比较熟悉,小学也接触过正比例等变量关系,有一定的研究函数概念的基础。但函数的概念本身比较抽象,对具体的问题应重点剖析,使学生更容易接受和理解。
4、教学目标:
知识与技能:
1、体会函数是刻画和研究变化过程中量与量之间关系的一种重要数学模
型。
2、探究具体问题中的数量关系和对应的规律。
3、结合具体的实例理解函数的概念和自变量的意义。
4、能够写出实例中的函数解析式,会确定自变量的取值范围,求函数值。
过程与方法:
1、通过探究具体的实例,体会从特定的事例中抽象出函数概念,分析两个变量是否满足函数过程,理解函数及其自变量的意义。
2、让学生主动地从事观察、操作、交流、归纳等探索活动,形成自己对数学知识的理解和有效的学习模式。
情感态度与价值观:
1、积极参与探究活动,进行知识和情感的交流,激发探究的兴趣。
2、通过函数概念的学习,渗透从特殊到一般、从具体到抽象的思考方式,体会数形结合的数学思想。
3、体会生活中事物的相互联系,感受函数的普遍性。
5、教学重点和难点:
1、重点:了解函数的含义,会列简单解析式,会求函数自变量的取值范围及函数值。
2、难点:函数的概念,列函数解析式。
6、教法学法
1、针对八年级学生的认知和心理特征,结合本节课的具体内容,设置“创设情景——主体探究——合作交流——应用提高”的教学过程,体会“做中学”的教学模式。
2、充分调动学生思考、探究的积极性,尽可能地给学生创设活动的时间和空间,在老师的指导下以探究为主,辅以合作交流。
教学流程设计:
情景设置 | 教师活动 | 学生活动 | 设计意图 |
创设情景 引入新课 问题:根据这个图表,你能说出1-6点钟,每个时刻的温度吗? | 出示图片(这是老师手机中今天天气的实时预报) |
1、回答问题 2、思考:生活中的各种对应关系
| 激发学生的兴趣,体会事物的对应联系,为学习概念做准备。 |
思考问题 探究概念 问题一: 1、观察这个气温变化图,你能找到凌晨3时,上午9时和下午16时对应的温度吗?你能得到这天24小时内任意时刻对应的温度吗? 2、这一天的最高气温是多少?最低气温是多少? 问题二: 1、请写出用n表示p的表达式。 2、根据写出的表达式,是否可以得出任意次对折后的层数? 问题三: 1、在上述几个问题中,分别指出其中的变量。 2、说明在同一个问题中,当其中一个量变化时,另一个量是否也在相应地变化。 3、当其中一个量取定一个值时,另一个量是否也相应地取定一个值。 问题四: 判断两个变量是否具有函数关系的依据。
| 问题一: 1、出示图片
2、引导学生体会:在这个变化过程中有两个变量,T(温度)随t(时间)的变化而变化;给定一个时间t有唯一的温度T对应。 问题二: 1、出示问题情景 我们曾做过“对折纸”的游戏:取一张纸,第1次对折,1页纸折为2层;第2次对折2层纸折为4层;第3次对折,4层纸折为8层……用n表示对折的次数,p表示对折后的层数. 2、引导学生体会:在这个变化过程中有两个变量,p(对折的层数)随n(对折的次数)的变化而变化;给定一个次数n有唯一的层数p对应。 问题三:出示概念 一般地,在某个变化过程中,有两个变量x和y,如果给定x的一个值,就能相应地确定一个y值,那么我们就说y是x的函数. 问题四: 练习:
| 1、思考交流,结合图象,回答问题。 2、体会: 在问题一的变化过程中有两个变量,T(温度)随t(时间)的变化而变化;给定一个时间t有唯一的温度T对应; 问题二的变化过程中有两个变量,p(对折的层数)随n(对折的次数)的变化而变化;给定一个次数n有唯一的层数p对应。 3、找出变化过程的共同点: (1)两个变量; (2)一个量随着另一个量的变化而变化; (3)一个变量取一个定值时,另一个变量就有确定的值与之对应。 4、讨论两个变量是否成函数关系的依据:对于一个变量的每一个值,另一个变量都有唯一的值与其对应。 | 1、通过两个问题的探究使学生明确具体问题中变量之间的相互联系。 2、以学生活动为中心,充分发挥学生的主动性,自己探究函数的概念。 3、能够体会和探讨出判断函数关系的依据。 |
深入实质 剖析应用 问题一: 函数的自变量可以在允许的范围内取值,超出这个范围可能失去意义,这就是函数自变量的取值范围问题。 问题二: 函数的自变量的取值范围条件的确定。 | 问题一:出示问题 1、某市某一天的气温T(温度)是t(时间)的函数,其中自变量t可取哪些值?如果t取第二天凌晨3时,原问题还有意义吗? 2、折纸的层数是折纸次数的函数,其中自变量n可取哪些值?当n=0.5时,原问题有没有意义? 引导学生总结: t可取这一天0-24时中的任意值,n只能取正整数。 问题二:出示问题 1、求下列函数的自变量x的取值范围 (1)y=2x+1(2)y=(3)y= 2、如图,等腰直角三角形ABC的直角边长与正方形MNPQ的边长均为10cm ,边CA与边MN 在同一条直线上,点A与点M重合。让△ABC沿MN方向运动.当点A与点N 重合时停止运动。试写出运动中两个图形重叠部分的面积y(cm2) 与MA 的长度x(cm)之间的函数关系式,并指出自变量的取值范围.
解答过程:
解:因为△ABC是等腰直角三角形, | 1、学生分析、归纳后发现自变量的取值可能存在问题,进而得出函数的自变量可以在允许的范围内取值。 2、独立思考问题,随后合作交流,最后总结归纳出:函数的自变量的取值范围由两个条件所确定,一是使函数表达式有意义;二是使所描述的实际问题有意义。 | 1、对上面的活动中获得的概念进行巩固、补充、运用升华。 2、使学生经历探究思考的过程,挖掘学生的深层次思维。 3、给学生一个自主探索的机会,同时也有利于培养学生的合作精神。 |
| 四边形MNPQ是正方形,且AB=BC=QM=MN,所以运动中两个图形的重叠部分也是等腰直角三角形,由MA=x,得 点拨:函数的自变量的取值范围由哪些条件确定。 |
|
|
归纳反思 课堂小结 学生自主小结, 归纳整理 | 出示概念: 1、函数概念 2、两个变量成为函数关系的依据 3、函数自变量的取值范围的确定 | 1、归纳本节课有哪些收获?还有哪些疑惑? 2、畅所欲言, 互补得失。 3、展示成果,升华规律。 | 1、回顾本节课的流程,让学生体验到学习数学的快乐,在交流中与全班同学分享。 2、使所学知识条理化,系统化。 |
分层作业 强化新知
| 出示题目: 1、必做题课本P67 做一做1-2,练习1-2 2、选做题课本P68 A组,B组 | 1、完成必做题目。 2、完成选做题目。 | 1、巩固本节课所学内容,增强应用意识。 2、尊重学生的个体差异,为不同学生的成功创造条件,分层分类。 |
自变量的取值范围
教学设计思想:
本节课的主要内容是函数的概念以及自变量的取值范围。在现实世界中,到处都有变化的量,函数是表达现实世界中数量之间变化规律的一种数学模型。本节课是用变化的观点研究量,需要学生在解决问题的活动中亲身感受;在对变量有了初步认识的基础上,探索两个变量之间的依赖关系——函数,它是两个变量之间关系的积累和升华,是对问题背景的抽象与概括。
教学目标:
知识与技能:
叙述函数的概念;
能确定简单的整式、分式及实际问题中的函数自变量的取值范围。
过程与方法:
经历由实际问题抽象出函数模型,感受变量与函数是刻画现实生活中许多变化事物的一种重要的数学工具;
学习本节要注意自变量与因变量的意义。
情感态度价值观:
通过观察和思考“神州”五号飞船返回过程中的相关记录,意识到知识来源于生活,激发学习兴趣。
教学重点:
函数的概念、自变量的取值范围。
教学难点:
函数的概念。
教学安排:
2课时。
教 具:
直尺、计算器。
教学过程:
一、引入
师:大家还记得“神舟”五号飞船嘛,现在我们就那它举一例。
2003年10月15日,我国“神舟”五号载人飞船发射成功。绕地球飞行14圈后,飞船返回舱于10月16日6时23分顺利返回地面。下面是“神舟”五号飞船返回舱返回过程中的相关记录:
时间 | 5时38分 | 6时7分 | 6时11分 | 6时12分 | 6时17分 | 6时22分 | 6时23分 |
返回舱距地面的高度 | 350km | 100km | 15km | 10km | 6km | 10m | 0 |
降落状况 | 返回舱制动点火 | 返回舱处于无动力飞行状态,高速进入黑障区 | 引导伞引出减速区 | 1200m2的巨大降落伞打开 | 返回舱抛掉直径25m的防热大底 | 指示灯亮,提示即将着陆 | 返回舱成功降落地面 |
师:看上面的数据,回答下面的问题
(1)“神舟”五号飞船返回舱返回地面共用多少分钟?在这段时间里,返回舱的高度共下降了多少米?
(2)在这段时间里,飞船返回舱降落的速度最慢?
(3)上表中涉及了哪几个量?这几个量的值在这一变化过程中是保持不变还是不断变化?
[教学建议]分析“神舟”五号飞船返回舱降落的过程,应在观察表格的基础上先通过自己动手计算、动脑思考完成,然后再通过合作交流形成统一的认识。
引导学生借助计算器列出表格:
时段 | 一 | 二 | 三 | 四 | 五 | 六 |
时间/min | 29 | 4 | 1 | 5 | 5 | 1 |
路程/km | 250 | 85 | 5 | 4 | 5.99 | 0.01 |
速度/(km/min) | 8.6 | 21.3 | 5 | 0.8 | 1.2 | 0.01 |
学生得出结论。
二、讲授新知
师:通过上面这个活动,我们知道量可以“取不同的数值”,也可以“保持同一数值”。
看下面的例题:
一辆汽车,以90km/h的速度行驶在高速公路上,用t表示它行驶的时间(h),用s表示它行驶过的路程(km)。
(1)写出用t表示s的表达式。
(2)根据t的值,填写s相应的值。
t/h | 0.4 | 0.8 | 1 | 1.5 | 2 | 4 |
s/km |
|
|
|
|
|
|
(3)在这个问题中,涉及的量有哪些?其中,哪些量的值是保持不变的,哪些量可以取不同的数值?
教师提示:在汽车行驶过程中,速度可以取哪些值,行驶的时间、路程可以取哪些数值?注意哪些量的值是保持不变的,哪些量的值可以取不同的数值?
学生得出结论。
教师得出结论:在一个变化过程中,可以取不同数值的量叫做变量,而数值保持不变的量叫做常量。
师:我们再来回忆我们举的例子,在“神舟”五号飞船返回舱返回地面的过程中,返回舱降落的时间(从5时38分到6时23分)和返回舱距地面的高度,都是变量;在汽车以速度为90km/h的行驶中,速度90km/h是一个常量,而汽车行驶的时间t和驶过的路程s都是变量。
例:如图,矩形薄板的面积为120cm2,它的一条边长为xcm, 相邻的边长为ycm。
(1)在这个问题中,有几个变量?变量x可以取哪些数值?
(2)请写出用x表示y 的表达式。
(3)请任意取x的6个数值填入下表,并求出相应的y的值:
x/cm |
|
|
|
|
|
|
y/cm |
|
|
|
|
|
|
教师提问:上面的问题中,有哪几个变量?对于变量x给定大于0的一个数值,能否确定y的一个值?
学生互相交流,思考,得到:
(1)有两个变量x和y,变量x可以取大于0的任意一个数值。
(2)当变量x取定一个值(大于0)时,由y=,就可以确定变量y的相应的值。
教师总结:一般地,在某个变化过程中,有两个变量x和y,如果给定x一个值,就能相应地确定y的一个值,那么,我们就说y是x的函数,其中,x叫做自变量。
如果y是x的函数,那么也说y与x具有函数关系。
师:在上述问题中,请学生们考虑一下函数关系及自变量。
生:在问题中,y=,变量y是变量x的函数,x是自变量。
教师总结:确定变量间是否为函数关系,主要看:① 存在一个含有两个变量的变化过程;② 其中一个变量在某一个范围内取值;③ 对于这个变量在范围内的每一个给定的值,都能确定另一个变量的值(确定的方式可以是表格、表达式,还可以是图形。)
三、课堂小结:
这节课,我们进一步地研究了变量和自变量以及有关函数的概念.我们举现实生活中的含有常量和变量的例子来进行学习,并研究其特征;同样举现实生活中的函数关系的例子,指明自变量及自变量的取值范围。
板书设计:
课题 一、引入 例 2.函数 二、 1.常量和变量 三、总结 |
感谢您下载使用【班海】教学资源。班海——老师们都在免费用的数学作业精细批改微信小程序!
初中数学冀教版九年级下册30.1 二次函数教案及反思: 这是一份初中数学冀教版九年级下册30.1 二次函数教案及反思,共5页。教案主要包含了试一试,提出问题,观察;概括,课堂练习,小结,作业等内容,欢迎下载使用。
初中数学冀教版八年级下册第二十一章 一次函数21.4 一次函数的应用教案设计: 这是一份初中数学冀教版八年级下册第二十一章 一次函数21.4 一次函数的应用教案设计,共4页。教案主要包含了预学等内容,欢迎下载使用。
初中数学冀教版八年级下册第二十一章 一次函数21.2 一次函数的图像和性质教案设计: 这是一份初中数学冀教版八年级下册第二十一章 一次函数21.2 一次函数的图像和性质教案设计,共8页。教案主要包含了学习目标,自学指导,课堂练习,拓展延伸,总结反思等内容,欢迎下载使用。