2023年中考数学二轮专题复习《二次函数压轴题-构建相似三角形问题》(2份打包,教师版+原卷版)
展开2023年中考数学二轮专题复习
《二次函数压轴题-构建相似三角形问题》
1.如图,已知直线y=﹣x+3的图象分别交x轴于A点,交y轴于B点,抛物线y=﹣x2+bx+c经过点A、B两点,并与x轴交于另一点D,顶点为C.
(1)求C、D两点的坐标;
(2)求tan∠BAC;
(3)在y轴上是否存在一点P,使得以P、B、D三点为顶点的三角形与△ABC相似?如果存在,请求出点P的坐标;如果不存在,请说明理由.
2.如图,在平面直角坐标系中,抛物线y=ax2+bx+c与x轴交于点A(﹣2,0),点B(4,0),与y轴交于点C(0,8),连接BC,又已知位于y轴右侧且垂直于x轴的动直线l,沿x轴正方向从O运动到B(不含O点和B点),且分别交抛物线、线段BC以及x轴于点P,D,E.
(1)求抛物线的表达式;
(2)连接AC,AP,当直线l运动时,求使得△PEA和△AOC相似的点P的坐标;
(3)作PF⊥BC,垂足为F,当直线l运动时,求Rt△PFD面积的最大值.
3.如图,已知抛物线与x轴交于A(﹣1,0),B(4,0),与y轴交于C(0,﹣2).
(1)求抛物线的解析式;
(2)H是C关于x轴的对称点,P是抛物线上的一点,当△PBH与△AOC相似时,求符合条件的P点的坐标(求出两点即可);
(3)过点C作CD∥AB,CD交抛物线于点D,点M是线段CD上的一动点,作直线MN与线段AC交于点N,与x轴交于点E,且∠BME=∠BDC,当CN的值最大时,求点E的坐标.
4.抛物线y=ax2+bx+3经过点A(1,0)和点B(5,0).
(1)求该抛物线所对应的函数解析式;
(2)该抛物线与直线y=x+3相交于C、D两点,点P是抛物线上的动点且位于x轴下方,直线PM∥y轴,分别与x轴和直线CD交于点M、N.
①连接PC、PD,如图①,在点P运动过程中,△PCD的面积是否存在最大值?若存在,求出这个最大值;若不存在,说明理由.
②连接PB,过点C作CQ⊥PM,垂足为点Q,如图②, 是否存在点P,使得△CNQ与△PBM相似?若存在,求出满足条件的点P的坐标;若不存在,说明理由.
5.如图,抛物线y=x2+bx+c与x轴交于A、B两点,B点坐标为(3,0),与y轴交于点C(0,﹣3).
(1)求抛物线的解析式;
(2)点P在抛物线位于第四象限的部分上运动,当四边形ABPC的面积最大时,求点P的坐标和四边形ABPC的最大面积.
(3)直线l经过A、C两点,点Q在抛物线位于y轴左侧的部分上运动,直线m经过点B和点Q,是否存在直线m,使得直线l、m与x轴围成的三角形和直线l、m与y轴围成的三角形相似?若存在,求出直线m的解析式,若不存在,请说明理由.
6.如图,已知抛物线经过原点O,顶点为A(1,1),且与直线y=x﹣2交于B,C两点.
(1)求抛物线的解析式及点C的坐标;
(2)求证:△ABC是直角三角形;
(3)若点N为x轴上的一个动点,过点N作MN⊥x轴与抛物线交于点M,则是否存在以O,M,N为顶点的三角形与△ABC相似?若存在,请求出点N的坐标;若不存在,请说明理由.
7.如图,抛物线y=ax2﹣2ax+c(a≠0)交x轴于A、B两点,A点坐标为(3,0),与y轴交于点C(0,4).
(1)求抛物线的解析式;
(2)设点M是线段AC(不包括A、C两点)上一点,过点M作MP∥y轴,交抛物线于点P,求线段PM的长的最大值,并写出此时点M的坐标;
(3)过点C作CE∥x轴,交抛物线于点E,设点Q是CE上方的抛物线上一点,连接CQ,过点Q作QF∥y轴,交CG于点F,若以Q、C、F为顶点的三角形和△BOC相似,求点Q的坐标.
8.如图,直线y=﹣x﹣2与x轴,y轴分别交于点A,点B,两动点D,E分别从点A,点B同时出发向点O运动(运动到点O停止),运动速度分别是1个单位长度/秒和个单位长度/秒,设运动时间为t秒,以点A为顶点的抛物线经过点E,过点E作x轴的平行线,与抛物线的另一个交点为点G,与AB相交于点F.
(1)求点A,点B的坐标;
(2)用含t的代数式分别表示EF和AF的长;
(3)当四边形ADEF为菱形时,试判断△AFG与△AGB是否相似,并说明理由.
(4)是否存在t的值,使△AGF为直角三角形?若存在,求出这时抛物线的解析式;若不存在,请说明理由.
9.如图,已知二次函数y=ax2﹣bx﹣c(a≠0)的图象经过点A(1,0),B(2,0),C(0,﹣2),
直线x=m(m>2)与x轴交于点D.
(1)求二次函数的解析式;
(2)在直线x=m(m>2)上有一点E(点E在第四象限),使得E、D、B为顶点的三角形与以A、O、C为顶点的三角形相似,求E点坐标(用含m的代数式表示);
(3)在(2)成立的条件下,抛物线上是否存在一点F,使得四边形ABEF为平行四边形?若存在,请求出F点的坐标;若不存在,请说明理由.
10.如图,二次函数y=﹣x2+bx+c的图象与x轴交于点A(﹣1,0),B(2,0),与y轴相交于点C.
(1)求二次函数的解析式;
(2)若点E是第一象限的抛物线上的一个动点,当四边形ABEC的面积最大时,求点E的坐标,并求出四边形ABEC的最大面积;
(3)若点M在抛物线上,且在y轴的右侧.⊙M与y轴相切,切点为D.以C,D,M为顶点的三角形与△AOC相似,请直接写出点M的坐标.
11.如图1,在平面直角坐标系中,抛物线y=ax2+1经过点A(4,﹣3),顶点为点B,点P为抛物线上的一个动点,l是过点(0,2)且垂直于y轴的直线,过P作PH⊥l,垂足为H,连接PO.
(1)求抛物线的解析式,并写出其顶点B的坐标;
(2)①当P点运动到A点处时,计算:PO= ,PH= ,由此发现,PO PH(填“>”、“<”或“=”);
②当P点在抛物线上运动时,猜想PO与PH有什么数量关系,并证明你的猜想;
(3)如图2,设点C(1,﹣2),问是否存在点P,使得以P,O,H为顶点的三角形与△ABC相似?若存在,求出P点的坐标;若不存在,请说明理由.
12.如图,抛物线y=0.5x2+mx+n与直线y=﹣0.5x+3交于A,B两点,交x轴与D,C两点,连接AC,BC,已知A(0,3),C(3,0).
(Ⅰ)求抛物线的解析式和tan∠BAC的值;
(Ⅱ)在(Ⅰ)条件下:
(1)P为y轴右侧抛物线上一动点,连接PA,过点P作PQ⊥PA交y轴于点Q,问:是否存在点P使得以A,P,Q为顶点的三角形与△ACB相似?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.
(2)设E为线段AC上一点(不含端点),连接DE,一动点M从点D出发,沿线段DE以每秒一个单位速度运动到E点,再沿线段EA以每秒个单位的速度运动到A后停止,当点E的坐标是多少时,点M在整个运动中用时最少?
中考数学二轮压轴培优专题 二次函数与圆存在性问题(2份打包,教师版+原卷版): 这是一份中考数学二轮压轴培优专题 二次函数与圆存在性问题(2份打包,教师版+原卷版),文件包含中考数学二轮压轴培优专题二次函数与圆存在性问题教师版doc、中考数学二轮压轴培优专题二次函数与圆存在性问题原卷版doc等2份试卷配套教学资源,其中试卷共30页, 欢迎下载使用。
中考数学二轮压轴培优专题 二次函数与新定义综合问题(2份打包,教师版+原卷版): 这是一份中考数学二轮压轴培优专题 二次函数与新定义综合问题(2份打包,教师版+原卷版),文件包含中考数学二轮压轴培优专题二次函数与新定义综合问题教师版doc、中考数学二轮压轴培优专题二次函数与新定义综合问题原卷版doc等2份试卷配套教学资源,其中试卷共28页, 欢迎下载使用。
中考数学二轮压轴培优专题 二次函数与相似问题(2份打包,教师版+原卷版): 这是一份中考数学二轮压轴培优专题 二次函数与相似问题(2份打包,教师版+原卷版),文件包含中考数学二轮压轴培优专题二次函数与相似问题教师版doc、中考数学二轮压轴培优专题二次函数与相似问题原卷版doc等2份试卷配套教学资源,其中试卷共32页, 欢迎下载使用。