中考数学二轮专题复习《函数实际应用》解答题专项练习十(含答案)
展开中考数学二轮专题复习
《函数实际应用》解答题专项练习十
1.某苹果基地销售优质苹果,该基地对需要送货且购买量在2000 kg~5000 kg(含2000 kg和5000 kg)的客户有两种销售方案(客户只能选择其中一种方案):
方案A:每千克5.8元,由基地免费送货.
方案B:每千克5元,客户需支付运费2000元.
(1)请分别写出按方案A,方案B购买这种苹果的应付款y(元)与购买量x(kg)之间的函数表达式;
(2)求购买量x在什么范围时,选用方案A比方案B付款少;
(3)某水果批发商计划用20000元,选用这两种方案中的一种,购买尽可能多的这种苹果,请写出他应选择哪种方案.
2.某药品研究所开发一种抗菌新药,经多年动物实验,首次用于临床人体试验,测得成人服药后血液中药物浓度y(微克/毫升)与服药时间x小时之间函数关系如图所示(当4≤x≤10时,y与x成反比例).
(1)根据图象分别求出血液中药物浓度上升和下降阶段y与x之间的函数关系式.
(2)问血液中药物浓度不低于4微克/毫升的持续时间多少小时?
3.某工厂生产的某种产品按质量分为10个档次,据调查显示,每个档次的日产量及相应的单件利润如表所示(其中x为正整数,且1≤x≤10);
为了便于调控,此工厂每天只生产一个档次的产品,当生产质量档次为x的产品时,当天的利润为y万元.
(1)求y关于x的函数关系式;
(2)工厂为获得最大利润,应选择生产哪个档次的产品?并求出当天利润的最大值.
4.某工厂计划生产A、B两种产品共60件,需购买甲、乙两种材料.生产一件A产品需甲种材料4千克,乙种材料1千克;生产一件B产品需甲、乙两种种材料各3千克.经测算,购买甲、乙两种材料各1千克共需资金60元;购买甲种材料2千克和乙种材料3千克共需资金155元.
(1)甲、乙两种材料每千克分别是多少元?
(2)现工厂用于购买甲、乙两种材料的资金不超过9900元,且生产B产品不少于38件,问符合生产条件的生产方案有哪几种?
(3)在(2)的条件下,若生产一件A产品需加工费40元,若生产一件B产品需加工费50元,应选择那种生产方案,使生产这60件产品的成本最低?(成本=材料费+加工费)
5.我市在创建全国文明城市过程中,决定购买A、B两种树苗对某路段道路进行绿化改造,已知购买A种树苗5棵,B种树苗10棵,需要1300元;购买A种树苗3棵,B种树苗5棵,需要710元.
(1)求购买A、B两种树苗每棵各需多少元?
(2)考虑到绿化效果和资金周转,购进A种树苗不能少于30棵,且用于购买这两种树苗的资金不能超过8650元,现需购进这两种树苗共100棵,则有哪几种购买方案?
(3)某包工队承包种植任务,若种好一棵A种树苗可获工钱25元,种好一棵B种树苗可获工钱15元,在第(2)问的各种购买方案中,种好这100棵树苗,哪一种购买方案所付的种植工钱最少?最少工钱是多少元?
6.利民商店经销甲、乙两种商品. 现有如下信息:
请根据以上信息,解答下列问题:
(1)甲、乙两种商品的进货单价各多少元?
(2)该商店平均每天卖出甲商品500件和乙商品300件.经调查发现,甲、乙两种商品零售单价分别每降0.1元,这两种商品每天可各多销售100件.为了使每天获取更大的利润,商店决定把甲、乙两种商品的零售单价都下降m元. 在不考虑其他因素的条件下,当m定为多少时,才能使商店每天销售甲、乙两种商品获取的利润最大?每天的最大利润是多少?
7.某水产养殖大户为了更好地发挥技术优势,一次性收购了20000 kg淡水鱼,计划养殖一段时间后再出售.已知每天放养的费用相同,放养10天的总成本为30.4万元;放养20天的总成本为30.8万元(总成本=放养总费用+收购成本).
(1)设每天的放养费用是a万元,收购成本为b万元,求a和b的值;
(2)设这批淡水鱼放养t天后的质量为m(kg),销售单价为y元/kg.根据以往经验可知:
m与t的函数关系为m=;y与t的函数关系如图所示.
①分别求出当0≤t≤50和50<t≤100时,y与t的函数关系式;
②设将这批淡水鱼放养t天后一次性出售所得利润为W元,求当t为何值时,W最大?并求出最大值.(利润=销售总额-总成本)
0.参考答案
1.解:(1)方案A:函数表达式为:y=5.8x,
B:函数表达式为:y=5x+2000;
(2)由题意得5.8x<5x+2000,解不等式得x<2500,
∴当购买量x的取值范围为2000 kg≤x<2500 kg时,选用方案A比方案B付款少;
(3)他应选择方案B.
方案A中:y=20000时,x=20000÷5.8≈3448.3 kg;
方案B中:y=20000时,5x+2000=20000,即x=3600 kg,
∴他应选择方案B.
2.解:(1)当0≤x≤4时,设直线解析式为:y=kx,
将(4,8)代入得:8=4k,解得:k=2,
故直线解析式为:y=2x,
当4≤x≤10时,设反比例函数解析式为:y=,
将(4,8)代入得:8=4a-1,解得:a=32,
故反比例函数解析式为:y=32x-1;
因此血液中药物浓度上升阶段的函数关系式为y=2x(0≤x≤4),
下降阶段的函数关系式为y=32x-1(4≤x≤10).
(2)当y=4,则4=2x,解得:x=2,
当y=4,则4=32x-1,解得:x=8,
∵8﹣2=6(小时),
∴血液中药物浓度不低于4微克/毫升的持续时间6小时.
3.解:(1)由题意,得y=(2x+4),y=﹣10x2+180x+400(1≤x≤10的整数);
答:y关于x的函数关系式为y=﹣10x2+180x+400;
(2)∵y=﹣10x2+180x+400,
∴y=﹣10(x﹣9)2+1210.
∵1≤x≤10的整数,
∴x=9时,y最大=1210.
答:工厂为获得最大利润,应选择生产9档次的产品,当天利润的最大值为1210万元.
4.解:(1)设甲材料每千克x元,乙材料每千克y元,
则x+y=60,2x+3y=155.,解得x=25,y=35.
所以甲材料每千克25元,乙材料每千克35元;
(2)设生产A产品m件,生产B产品(60-m)件,则生产这60件产品的材料费为
25×4m+35×1m+25×3(60-m)+35×3(60-m)=-45m+10800,
由题意:-45m+10800≤9900,解得m≥20,
又∵60-m≥38,解得m≤22,
∴20≤m≤22,
∴m的值为20,21,22,
共有三种方案:
①生产A产品20件,生产B产品40件;
②生产A产品21件,生产B产品39件;
③生产A产品22件,生产B产品38件.
(3)生产A产品21件,B产品39件成本最低.理由如下:
设生产成本为W元,则W与a的关系式为:
W=(25×4+35×1+40)(60﹣a)+(35×3+25×3+50)a=55a+10 500,
即W是a的一次函数,
∵k=55>0
∴W随a增大而增大
∴当a=39时,总成本最低;
即生产A产品21件,B产品39件成本最低.
5.解:(1)设购买A种树苗每棵需要x元,B种树苗每棵需要y元,
由题意得:,解得:.
答:购买A种树苗每棵需要120元,B种树苗每棵需要70元.
(2)设购买A种树苗m棵,则购买B种树苗(100﹣m)棵,
根据已知,得,解得:30≤m≤33.
故有四种购买方案:
方案1、购买A种树苗30棵,B种树苗70棵;
方案2、购买A种树苗31棵,B种树苗69棵;
方案3、购买A种树苗32棵,B种树苗68棵;
方案4、购买A种树苗33棵,B种树苗67棵.
(3)设种植工钱为W,由已知得:
W=25m+15(100﹣m)=10m+1500,
∵10>0,W随x的增大而增大,
∴当m=30时,W最小,最小值为1800元.
故购买A种树苗30棵、B种树苗70棵时所付的种植工钱最少,最少工钱是1800元.
6.解:(1)设甲商品的进货单价是x元,乙商品的进货单价是y元.据题意,得解得
答:甲商品的进货单价是2元,乙商品的进货单价是3元.
(2)设商店每天销售甲、乙两种商品获取的利润为s元,则
s=(1﹣m)(500+100×)+(5﹣3﹣m)(300+100×)
即s=﹣2000m2+2200m+1100=﹣2000(m﹣0.55)2+1705.
∴当m=0.55时,s有最大值,最大值为1705.
答:当m定为0.55时,才能使商店每天销售甲、乙两种商品获取的利润最大,每天的最大利润是1705元.
7.解:(1)由题意得解得
即a的值为0.04,b的值为30
(2)①当0≤t≤50时,设y与x的函数关系式为y=k1t+n1,
把点(0,15)和(50,25)的坐标分别代入y=k1t+n1,
解得∴y与t的函数关系式为y=t+15;
当50<t≤100时,设y与t的函数关系式为y=k2t+n2,
把点(50,25)和(100,20)的坐标分别代入y=k2t+n2,
解得∴y与t的函数关系式为y=-t+30
②由题意得,当0≤t≤50时,W=20000(t+15)-(400t+300000)=3600t,
∵3600>0,
∴当t=50时,W最大值=180000(元);
当50<t≤100时,W=(100t+15000)(-t+30)-(400t+300000)
=-10t2+1100t+150000=-10(t-55)2+180250,
∵-10<0,
∴当t=55时,W最大值=180250(元);
综上所述,当t为55时,W最大,最大值为180250元
中考数学二轮专题复习《函数实际应用》解答题专项练习四(含答案): 这是一份中考数学二轮专题复习《函数实际应用》解答题专项练习四(含答案),共7页。试卷主要包含了1元,5吨,2)=2500,等内容,欢迎下载使用。
中考数学二轮专题复习《函数实际应用》解答题专项练习七(含答案): 这是一份中考数学二轮专题复习《函数实际应用》解答题专项练习七(含答案),共7页。试卷主要包含了5),代入得等内容,欢迎下载使用。
中考数学二轮专题复习《函数实际应用》解答题专项练习六(含答案): 这是一份中考数学二轮专题复习《函数实际应用》解答题专项练习六(含答案),共7页。试卷主要包含了2 m,宽2,)),4时,y=-eq \f×2,4x﹣1﹣0等内容,欢迎下载使用。