初中数学浙教版九年级下册2.3 三角形的内切圆优秀课件ppt
展开2.3三角形的内切圆
课题 | 2.3三角形的内切圆
| 单元 | 第二单元 | 学科 | 数学 | 年级 | 九年级(下) |
学习 目标 | 1. 掌握三角形的内切圆及内心的概念,能进行与内切 圆有关的计算; 2.会作三角形的内切圆; 3.三角形的内切圆在实际生活中的应用. | ||||||
重点 | 三角形的内切圆的概念.
| ||||||
难点 | 例2是内切圆的概念、切线的性质和全等三角形等知识的综合应用,辅助线较多,是本节教学的难点. |
教学过程 |
教学环节 | 教师活动 | 学生活动 | 设计意图 |
导入新课 | 一、创设情景,引出课题 如图,要从一块三角形钢化玻璃上裁下一个半径尽可能大的圆来做一圆桌的桌面,应该怎样画出裁剪的图样呢? 建议按下列步骤探索: (1)当裁得的圆最大时,圆与三角形的各边有什么位置关系? (2)与三角形的一个角的两边都相切的圆的圆心在哪里? (3)如何确定这个圆的圆心和半径? 解:(1)圆与三角形的各边都相切. (2)圆心在这个角的角平分线上. (3)两个内角的角平分线交点为圆心,以交点到三角形的任一边的距离为半径. 课本用怎样从一块三角形玻璃上裁下一个半径尽可能大的圆做桌面这个实际问题引入本课内容,加强学生对所学内容的必要性的认识,有利于创设良好的学习情境. 三角形的内切圆的作法分析应突出以下几点: (1)在分析作图题时,常假设图形已经作出,这样有直观图形借鉴,给分析思考带来方便. (2)作图的关键是找出圆心,并确定圆的半径.确定点的位置,交轨法是常用的方法.这种方法学生以前虽有所接触,但教学中仍需要强化.在圆心确定之后,可以由圆心引三角形一边的垂线段来确定内切圆的半径. | 思考 自议 三角形的内心一定在三角形的内部,它不仅是三角形的内切圆的圆心,它还是三角形三条角平分线的 交点,它到三边的距离相等.
|
思想方法:常见辅助线是连结过切点的半径。 设置问题情景,引导学生进入学习状态,充分调动学生学习的新知的兴趣.
|
讲授新课 | 二、提炼概念 定义:和三角形各边都相切的圆叫做三角形的内切圆,内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形. 性质:内心到三角形三边的距离相等;内心与顶点连线平分内角. 在概括三角形的内切圆和内心的概念时,有必要引导学生与三角形的外接圆和外心作比较,以免互相混淆.还要注意“内”“外”称呼的相对性.具体地说,当圆内切于三角形时,三角形在圆外,帮称圆的外切三角形.同样,当三角形内接于圆时,圆在三角形外,故称三角形的外接圆.
三、典例精讲 【例1】如图,等边三角形ABC的边长为3cm.求△ABC的内切圆⊙O的半径. 解:如图,设⊙O切AB于点D,连结OA,OB,OD. 讲解例1,教学中可作如下启发: (1)图中的⊙O与△ABC有何关系?那么怎样作出⊙O的半径? (2)要计算半径OD的长,需要构造怎样的直角三角形?为此,怎样添加辅助线? (3)AO与∠BAC有什么关系?AD与BD相等吗?根据什么?由此可见Rt△AOD可解吗? 【例2】已知:如图,⊙O是△ABC的内切圆,切点分别为D,E,F.设△ABC的周长为l. 证明:∵⊙O是△ABC的内切圆,E,F为切点, 本例证明的关键是引导学生得到AE=AF,BF=BD,CD=CE,教学中可作如下启发: (1)三角形的周长l可怎样计算?(AB+BC+CA=AF+BF+BD+DC+CE+AE). (2)AE与AF,BF与BD,CD与CE分别有什么关系?根据什么? (3)由(2),你认为l可以用哪些线段和表示? 如例2图,设△ABC的面积为S,周长为l,△ABC的内切圆的半径为r,则S=lr.请说明理由. 解:如图,⊙O是△ABC的内切圆,切点分别为D,E,F. 连结OA,OB,OC,OD,OE,OF,则OD⊥BC,OE⊥AC,OF⊥AB,且OE=OF=OD=r. ∵S=S△AOB+S△OBC+S△COA, ∴S=AB×OF+BC×OD+CA×OE=r(AB+BC+CA)=lr. | 积极参加学习活动中,探索新知的应用.并思考总结每种题型的解题思路.
|
概括三角形的内切圆和内心的概念时,有必要引导学生与三角形的外接圆和外心作比较,以免互相混淆.还要注意“内”“外”称呼的相对性.
|
课堂检测 | 四、巩固训练 1、如图,⊙O是△ABC的内切圆,D、E、F是切点,∠A=50°,∠C=60°,则∠DOE=( ) (A)70° (B)110° (C)120° (D)130° 1.B
A.△ABC的三条内角平分线的交点处 B.△ABC的三条高线的交点处 C.△ABC三边的中垂线的交点处 D.△ABC的三条中线的交点处 2.A
3.小兵手拿一张等腰三角形纸片△ABC,AB=AC=10 cm,BC=12 cm,如图所示,他要同学小红求出这张纸片上裁剪出一个最大的圆的半径.小红说:“可以,但你要取一张最小的圆形纸片将△ABC完全覆盖.”小兵说:“行,咱俩比一比!”聪明的同学,请你也来求一求这裁剪出的最大圆的半径与最小覆盖圆的半径. 解: 剪出的最大圆为△ABC的内切圆,设圆心为I,最小覆盖圆是△ABC的外接圆,设圆心为O. (1)连结IB,过点A作AD⊥BC于D,IE⊥AB于E, ∵AB=AC=10 cm, ∴I,O均在AD上, BD=BC=×12=6(cm), ∴AD===8(cm). 设内切圆半径为r, ∵I为内心,∴IE=ID=r,AI=8-r, 又∵∠BEI=∠BDI=90°,BI=BI,EI=DI, ∴Rt△BEI≌Rt△BDI, ∴BE=BD=6 cm, ∴AE=AB-BE=4 cm.
4. 如图,⊙O是Rt△ABC的内切圆,∠C=90°,AO的延长线交BC于点D.若AC=6,CD=2,求⊙O的半径. 解:过O分别作AC,BC的垂线. OE,OF,E,F为垂足,易证四边形OECF为正方形, 设边长为x,即为⊙O的半径. ∵∠AEO=∠ACD=Rt∠, ∴△AEO∽△ACD, ∴=,解得x=1.5. |
|
|
课堂小结 | 1.内切圆的有关概念:与三角形各边都相切的圆叫三角形的内切圆,三角形的内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形.三角形的内心就是三角形三个内角角平分线的交点. 2任何一个三角形有且仅有一个内切圆,而任一个圆都有无数个外切三角形. 3三角形内心的性质: 三角形的内心到三角形三边的距离相等; 三角形的内心与三角形顶点的连线平分这个内角. |
|
|
浙教版九年级上册2.3 用频率估计概率优秀课件ppt: 这是一份浙教版九年级上册2.3 用频率估计概率优秀课件ppt,文件包含浙教版数学九上23用频率估计概率课件pptx、浙教版数学九上23用频率估计概率学案doc、浙教版数学九上23用频率估计概率教案doc等3份课件配套教学资源,其中PPT共20页, 欢迎下载使用。
浙教版九年级下册第二章 直线与圆的位置关系2.3 三角形的内切圆评课ppt课件: 这是一份浙教版九年级下册第二章 直线与圆的位置关系2.3 三角形的内切圆评课ppt课件PPT课件主要包含了一起探究,☉O就是所求的圆,知识总结,三角形的内心性质,解得x4等内容,欢迎下载使用。
初中数学浙教版九年级下册2.3 三角形的内切圆教学ppt课件: 这是一份初中数学浙教版九年级下册2.3 三角形的内切圆教学ppt课件,共6页。