2015年江苏省苏州市中考数学试卷(空白卷)
展开2015年江苏省苏州市中考数学试卷
一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将选择题的答案用2B铅笔涂在答题卡相应位置上.
1.2的相反数是
A.2 B. C.2 D.
2.有一组数据:3,5,5,6,7,这组数据的众数为
A.3 B.5 C.6 D.7
3.月球的半径约为1 738 000m,1 738 000这个数用科学记数法可表示为
A.1.738×106 B.1.738×107 C.0.1738×107 D.17.38×105
4.若,则有
A.0<m<1 B.-1<m<0 C.-2<m<-1 D.-3<m<-2
5.小明统计了他家今年5月份打电话的次数及通话时间,并列出了频数分布表:
通话时间x/min | 0<x≤5 | 5<x≤10 | 10<x≤15 | 15<x≤20 |
频数(通话次数) | 20 | 16 | 9 | 5 |
则通话时间不超过15min的频率为
A.0.1 B.0.4 C.0.5 D.0.9
6.若点A(a,b)在反比例函数的图像上,则代数式ab-4的值为
A.0 B.-2 C. 2 D.-6
7.如图,在△ABC中,AB=AC,D为BC中点,∠BAD=35°,则∠C的度数为
A.35° B.45° C.55° D.60°
8.若二次函数y=x2+bx的图像的对称轴是经过点(2,0)且平行于y轴的直线,则关于x的方程x2+bx=5的解为
A. B. C. D.
9.如图,AB为⊙O的切线,切点为B,连接AO,AO与⊙O交于点C,BD为⊙O的直径,连接CD.若∠A=30°,⊙O的半径为2,则图中阴影部分的面积为
A. B. C. D.
10.如图,在一笔直的海岸线l上有A、B两个观测站,AB=2km,从A测得船C在北偏东45°的方向,从B测得船C在北偏东22.5°的方向,则船C离海岸线l的距离(即CD的长)为
A.km B.km C.km D.km
二、填空题:本大题共8小题,每小题3分,共24分.把答案直接填在答题卡相应位置上.
11.计算:= ▲ .
12.如图,直线a∥b,∠1=125°,则∠2的度数为 ▲ °.
13.某学校在“你最喜爱的球类运动”调查中,随机调查了若干名学生(每名学生分别选了一项球类运动),并根据调查结果绘制了如图所示的扇形统计图.已知其中最喜欢羽毛球的人数比最喜欢乒乓球的人数少6人,则该校被调查的学生总人数为 ▲ 名.
14.因式分解:= ▲ .
15.如图,转盘中8个扇形的面积都相等.任意转动转盘1次,当转盘停止转动时,指针指向大于6的数的概率为 ▲ .
16.若,则的值为 ▲ .
17.如图,在△ABC中,CD是高,CE是中线,CE=CB,点A、D关于点F对称,过点F作FG∥CD,交AC边于点G,连接GE.若AC=18,BC=12,则△CEG的周长为 ▲ .
18.如图,四边形ABCD为矩形,过点D作对角线BD的垂线,交BC的延长线于点E,取BE的中点F,连接DF,DF=4.设AB=x,AD=y,则的值为 ▲ .
三、解答题:本大题共10小题,共76分.把解答过程写在答题卡相应位置上,解答时应写出必要的计算过程、推演步骤或文字说明.作图时用2B铅笔或黑色墨水签字笔.
19.(本题满分5分)
计算:.
20.(本题满分5分)
解不等式组:
21.(本题满分6分)
先化简,再求值:,其中.
22.(本题满分6分)甲、乙两位同学同时为校文化艺术节制作彩旗.已知甲每小时比乙多做5面彩旗,甲做60面彩旗与乙做50面彩旗所用时间相等,问甲、乙每小时各做多少面彩旗?
23.(本题满分8分)一个不透明的口袋中装有2个红球(记为红球1、红球2)、1个白球、1个黑球,这些球除颜色外都相同,将球摇匀.
(1)从中任意摸出1个球,恰好摸到红球的概率是 ▲ ;
(2)先从中任意摸出1个球,再从余下的3个球中任意摸出1个球,请用列举法(画树状图或列表)求两次都摸到红球的概率.
24.(本题满分8分)如图,在△ABC中,AB=AC.分别以B、C为圆心,BC长为半径在BC下方画弧,设两弧交于点D,与AB、AC的延长线分别交于点E、F,连接AD、BD、CD.
(1)求证:AD平分∠BAC;
(2)若BC=6,∠BAC=50,求、的长度之和(结果保留).
25.(本题满分8分)如图,已知函数(x>0)的图像经过点A、B,点B的坐标为(2,2).过点A作AC⊥x轴,垂足为C,过点B作BD⊥y轴,垂足为D,AC与BD交于点F.一次函数y=ax+b的图像经过点A、D,与x轴的负半轴交于点E.
(1)若AC=OD,求a、b的值;
(2)若BC∥AE,求BC的长.
26.(本题满分10分)如图,已知AD是△ABC的角平分线,⊙O经过A、B、D三点,过点B作BE∥AD,交⊙O于点E,连接ED.
(1)求证:ED∥AC;
(2)若BD=2CD,设△EBD的面积为,△ADC的面积为,且,求△ABC的面积.
27.(本题满分10分)如图,已知二次函数(其中0<m<1)的图像与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,对称轴为直线l.设P为对称轴l上的点,连接PA、PC,PA=PC.
(1)∠ABC的度数为 ▲ °;
(2)求P点坐标(用含m的代数式表示);
(3)在坐标轴上是否存在点Q(与原点O不重合),使得以Q、B、C为顶点的三角形与△PAC相似,且线段PQ的长度最小?如果存在,求出所有满足条件的点Q的坐标;如果不存在,请说明理由.
28.(本题满分10分)如图,在矩形ABCD中,AD=acm,AB=bcm(a>b>4),半径为2cm的⊙O在矩形内且与AB、AD均相切.现有动点P从A点出发,在矩形边上沿着A→B→C→D的方向匀速移动,当点P到达D点时停止移动;⊙O在矩形内部沿AD向右匀速平移,移动到与CD相切时立即沿原路按原速返回,当⊙O回到出发时的位置(即再次与AB相切)时停止移动.已知点P与⊙O同时开始移动,同时停止移动(即同时到达各自的终止位置).
(1)如图①,点P从A→B→C→D,全程共移动了 ▲ cm(用含a、b的代数式表示);
(2)如图①,已知点P从A点出发,移动2s到达B点,继续移动3s,到达BC的中点.若点P与⊙O的移动速度相等,求在这5s时间内圆心O移动的距离;
(3)如图②,已知a=20,b=10.是否存在如下情形:当⊙O到达⊙O1的位置时(此时圆心O1在矩形对角线BD上),DP与⊙O1恰好相切?请说明理由.
2020年江苏省苏州市中考数学试题(空白卷): 这是一份2020年江苏省苏州市中考数学试题(空白卷),共7页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2018年江苏省苏州市中考数学试卷(空白卷): 这是一份2018年江苏省苏州市中考数学试卷(空白卷),共7页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2016年江苏省镇江市中考数学试卷(空白卷): 这是一份2016年江苏省镇江市中考数学试卷(空白卷),共7页。试卷主要包含了填空题,选择题,解答题等内容,欢迎下载使用。