|试卷下载
搜索
    上传资料 赚现金
    初中数学中考复习 专题10 二次函数【考点精讲】(解析版)
    立即下载
    加入资料篮
    初中数学中考复习 专题10  二次函数【考点精讲】(解析版)01
    初中数学中考复习 专题10  二次函数【考点精讲】(解析版)02
    初中数学中考复习 专题10  二次函数【考点精讲】(解析版)03
    还剩23页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学中考复习 专题10 二次函数【考点精讲】(解析版)

    展开
    这是一份初中数学中考复习 专题10 二次函数【考点精讲】(解析版),共26页。试卷主要包含了二次函数的一般形式,函数图象和性质等内容,欢迎下载使用。

    专题10 二次函数


    知识导航



    知识精讲


    考点1:二次函数的图象和性质
    1.二次函数的一般形式:y=ax2+bx+c (a,b,c是常数,a≠0)
    注:未知数的最高次数是2,a≠0,b,c是任意实数。
    2.函数图象和性质
    函数
    二次函数y=ax2+bx+c(a,b,c为常数,a≠0)


    图象
    a>0
    a<0




    性质
    ①当a>0时,抛物线开口向上,并向上无限延伸.
    ②对称轴是,顶点坐标是.
    ③在对称轴的左侧,即当x<时,y随x的增大而减小;在对称轴的右侧,即当x>时,y随x的增大而增大,简记为左减右增.
    ④抛物线有最低点,当x=时,y有最小值,y最小值=.
    ①当a<0时,抛物线开口向下,并向下无限延伸.
    ②对称轴是,顶点坐标是.
    ③在对称轴的左侧,即当x<时,y随x的增大而增大;在对称轴的右侧,即当x>时,y随x的增大而减小,简记为左增右减.
    ④抛物线有最高点,当x=时,y有最大值,y最大值=.

    【例1】(2021·山东中考真题)一次函数与二次函数在同一平面直角坐标系中的图象可能是( )
    A. B.
    C. D.
    【答案】C
    【分析】
    逐一分析四个选项,根据二次函数图象的开口方向以及对称轴与y轴的位置关系,即可得出a、b的正负性,由此即可得出一次函数图象经过的象限,即可得出结论.
    【详解】
    A. ∵二次函数图象开口向下,对称轴在y轴左侧,
    ∴a<0,b<0,
    ∴一次函数图象应该过第二、三、四象限,故本选项错误;
    B. ∵二次函数图象开口向上,对称轴在y轴右侧,
    ∴a>0,b<0,
    ∴一次函数图象应该过第一、三、四象限,故本选项错误;
    C. ∵二次函数图象开口向下,对称轴在y轴左侧,
    ∴a<0,b<0,
    ∴一次函数图象应该过第二、三、四象限,故本选项正确;
    D. ∵二次函数图象开口向下,对称轴在y轴左侧,
    ∴a<0,b<0,
    ∴一次函数图象应该过第二、三、四象限,故本选项错误.
    故选C.
    【例2】(2021·四川中考真题)如图,已知抛物线(,,为常数,)经过点,且对称轴为直线,有下列结论:①;②;③;④无论,,取何值,抛物线一定经过;⑤.其中正确结论有( )

    A.1个 B.2个 C.3个 D.4个
    【答案】D
    【分析】
    ①根据图像开口向上,对称轴位置,与y轴交点分别判断出a,b,c的正负
    ②根据对称轴公式,判断的大小关系
    ③根据时,,比较与0的大小;
    ④根据抛物线的对称性,得到与时的函数值相等结合②的结论判断即可
    ⑤根据抛物线对称轴找到顶点坐标的纵坐标,比较任意一点与顶点的纵坐标值,即比较函数值的大小即可判断结论.
    【详解】
    ①图像开口朝上,故 ,根据对称轴“左同右异”可知,
    图像与y轴交点位于x轴下方,可知c<0

    故①正确;
    ②得

    故②错误;
    ③经过

    又由①得c<0

    故③正确;
    ④根据抛物线的对称性,得到与时的函数值相等
    当时,即


    经过,即经过
    故④正确;
    ⑤当时,, 当时,

    函数有最小值

    化简得,
    故⑤正确.
    综上所述:①③④⑤正确.
    故选D.
    方法技巧



    抛物线y=ax2+bx+c中a,b,c的作用
    (1)a决定开口方向及开口大小,这与y=ax2中的a完全一样.
    a>0时,抛物线开口向上;a<0时,抛物线开口向下;a的绝对值越大,开口越小.
    (2)b和a共同决定抛物线对称轴的位置.由于抛物线y=ax2+bx+c的对称轴是直线,故:①b=0时,对称轴为y轴;②>0(即a,b同号)
    时,对称轴在y轴左侧;③<0(即a,b异号)时,对称轴在y轴右侧.(口诀:“左同右异”)
    【注意问题】
    (1)二次函数的图象与系数的关系;
    (2)会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换.
    针对训练



    1.(2021·湖南中考真题)若二次函数的图象如图所示,则一次函数与反比例函数在同一个坐标系内的大致图象为( )

    A. B. C. D.
    【答案】D
    【分析】
    先根据抛物线的开口方向确定a<0,对称轴可确定b的正负,与y轴的交点可知c>0,然后逐项排查即可.
    【详解】
    解:∵抛物线开口方向向下
    ∴a<0,
    ∵抛物线对称轴
    ∴b>0
    ∵抛物线与y轴的交点在y轴的正半轴
    ∴c>0
    ∴的图像过二、一、四象限,的图象在二、四象限
    ∴D选项满足题意.
    故选D.
    2.(2021·福建中考真题)二次函数的图象过四个点,下列说法一定正确的是( )
    A.若,则 B.若,则
    C.若,则 D.若,则
    【答案】C
    【分析】
    求出抛物线的对称轴,根据抛物线的开口方向和增减性,根据横坐标的值,可判断出各点纵坐标值的大小关系,从而可以求解.
    【详解】
    解:二次函数的对称轴为:
    ,且开口向上,
    距离对称轴越近,函数值越小,

    A,若,则不一定成立,故选项错误,不符合题意;
    B,若,则不一定成立,故选项错误,不符合题意;
    C,若,所以,则一定成立,故选项正确,符合题意;
    D,若,则不一定成立,故选项错误,不符合题意;
    故选:C.
    3.(2021·湖北中考真题)二次函数的图象的一部分如图所示.已知图象经过点,其对称轴为直线.下列结论:①;②;③;④若抛物线经过点,则关于的一元二次方程的两根分别为,5,上述结论中正确结论的个数为( )

    A.1个 B.2个 C.3个 D.4个
    【答案】C
    【分析】
    根据二次函数的图象与性质进行逐项判断即可求解.
    【详解】
    解:①由图象可知,a<0,b>0,c>0,
    ∴abc<0,故①正确;
    ②∵对称轴为直线x= =1,且图象与x轴交于点(﹣1,0),
    ∴图象与x轴的另一个交点坐标为(3,0),b=﹣2a,
    ∴根据图象,当x=2时,y=4a+2b+c>0,故②错误;
    ③根据图象,当x=﹣2时,y=4a﹣2b+c=4a+4a+c=8a+c<0,故③正确;
    ④∵抛物线经过点,
    ∴根据抛物线的对称性,抛物线也经过点,
    ∴抛物线与直线y=n的交点坐标为(﹣3,n)和(5,n),
    ∴一元二次方程的两根分别为,5,
    故④正确,
    综上,上述结论中正确结论有①③④,
    故选:C.
    考点2:二次函数的平移
    1.抛物线y=a(x-h)2+k与y=ax2的关系
    (1)二者的形状相同,位置不同,y=a(x-h)2+k是由y=ax2通过平移得来的,平移后的顶点坐标为(h,k). 
    (2)y=ax2的图象
    右左
    上下
    y=a(x-h)2的图象
    y=a(x-h)2+k的图象.
    口诀:上加下减,左加右减

    【例3】(2020•广东)把函数y=(x﹣1)2+2图象向右平移1个单位长度,平移后图象的的数解析式(  )
    A.y=x2+2 B.y=(x﹣1)2+1 C.y=(x﹣2)2+2 D.y=(x﹣1)2﹣3
    【分析】先求出y=(x﹣1)2+2的顶点坐标,再根据向右平移横坐标加,求出平移后的二次函数图象顶点坐标,然后利用顶点式解析式写出即可.
    【解析】二次函数y=(x﹣1)2+2的图象的顶点坐标为(1,2),
    ∴向右平移1个单位长度后的函数图象的顶点坐标为(2,2),
    ∴所得的图象解析式为y=(x﹣2)2+2.
    故选:C.
    方法技巧



    图像平移规律:由函数y=ax2平移得到y=a(x-h)2+k满足“h值正右移,负左移;k值正上移,负下移”,概括成八个字,即:“左加右减,上加下减”.
    针对训练



    1.(2021·上海中考真题)将抛物线向下平移两个单位,以下说法错误的是( )
    A.开口方向不变 B.对称轴不变 C.y随x的变化情况不变 D.与y轴的交点不变
    【分析】根据二次函数的平移特点即可求解.
    【详解】
    将抛物线向下平移两个单位,开口方向不变、对称轴不变、故y随x的变化情况不变;与y轴的交点改变
    故选D.
    2.(2020•绥化)将抛物线y=2(x﹣3)2+2向左平移3个单位长度,再向下平移2个单位长度,得到抛物
    线的解析式是(  )
    A.y=2(x﹣6)2 B.y=2(x﹣6)2+4
    C.y=2x2 D.y=2x2+4
    【分析】根据“左加右减、上加下减”的原则进行解答即可.
    【详解】将将抛物线y=2(x﹣3)2+2向左平移3个单位长度所得抛物线解析式为:y=2(x﹣3+3)2+2,即y=2x2+2;
    再向下平移2个单位为:y=2x2+2﹣2,即y=2x2.
    故选:C.
    3.(2020•哈尔滨)将抛物线y=x2向上平移3个单位长度,再向右平移5个单位长度,所得到的拋物线
    为(  )
    A.y=(x+3)2+5 B.y=(x﹣3)2+5 C.y=(x+5)2+3 D.y=(x﹣5)2+3
    【分析】根据“上加下减,左加右减”的原则进行解答即可.
    【详解】由“上加下减”的原则可知,将抛物线y=x2向上平移3个单位所得抛物线的解析式为:y=x2+3;
    由“左加右减”的原则可知,将抛物线y=x2+3向右平移5个单位所得抛物线的解析式为:y=(x﹣5)2+3;
    故选:D.

    考点3:二次函数与方程、不等式的关系
    1.二次函数与一元二次方程的关系
    二次函数图象与x轴的交点有三种情况:有两个交点、有一个交点、没有交点。当图象与x轴有交点时,令y=0,解方程ax2+bx+c=0就可求出与x轴交点的横坐标。
    Δ=b2-4ac
    ax2+bx+c=0的根
    抛物线y=ax2+bx+c与x轴的交点
    Δ>0
    两个不相等的实数根
    两个交点
    Δ=0
    两个相等的实数根
    一个交点
    Δ<0
    无实数根
    无交点
    2.二次函数与不等式的关系
    设抛物线y=ax2+bx+c(a>0)与x轴交于(x1,0),(x2,0)两点,其中x10的解集为x>x2或x
    【例4】(2021·浙江中考真题)已知和均是以为自变量的函数,当时,函数值分别为和,若存在实数,使得,则称函数和具有性质.以下函数和具有性质的是( )
    A.和 B.和
    C.和 D.和
    【答案】A
    【分析】
    根据题中所给定义及一元二次方程根的判别式可直接进行排除选项.
    【详解】
    解:当时,函数值分别为和,若存在实数,使得,
    对于A选项则有,由一元二次方程根的判别式可得:,所以存在实数m,故符合题意;
    对于B选项则有,由一元二次方程根的判别式可得:,所以不存在实数m,故不符合题意;
    对于C选项则有,化简得:,由一元二次方程根的判别式可得:,所以不存在实数m,故不符合题意;
    对于D选项则有,化简得:,由一元二次方程根的判别式可得:,所以不存在实数m,故不符合题意;
    故选A.
    【例5】(2021·广西中考真题)如图,已知抛物线与直线交于,两点,则关于的不等式的解集是( )

    A.或 B.或 C. D.
    【答案】D
    【分析】
    将要求的不等式抽象成两个函数的函数关系问题,根据二次函数图象的对称性,以及两一次函数图象的关系,求出新的一次函数与二次函数的交点,从而写出抛物线在直线上方部分的x的取值范围即可.
    【详解】
    与关于y轴对称
    抛物线的对称轴为y轴,
    因此抛物线与直线的交点和与直线的交点也关于y轴对称
    设与交点为,则,

    即在点之间的函数图像满足题意
    的解集为:
    故选D.
    方法技巧



    一元二次方程和二次函数的区别与联系
    (1)求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标,令y=0,即ax2+bx+c=0,解关于x的一元二次方程即可求得交点横坐标.
    (2)二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点和一元二次方程ax2+bx+c=0的根之间的关系:
    Δ=b2-4ac决定抛物线与x轴的交点个数.
    ①Δ=b2-4ac>0时,抛物线与x轴有2个交点;
    ②Δ=b2-4ac=0时,抛物线与x轴有1个交点;
    ③Δ=b2-4ac<0时,抛物线与x轴没有交点.
    (3)二次函数的交点式:y=a(x-x1)(x-x2)(a,b,c是常数,a≠0),可直接得到抛物线与x轴的交点坐标(x1,0),(x2,0).
    针对训练


    1.(2021·贵州中考真题)已知直线过一、二、三象限,则直线与抛物线的交点个数为( )
    A.0个 B.1个 C.2个 D.1个或2个
    【答案】C
    【分析】
    先由直线过一、二、三象限,求出,通过判断方程实数解的个数可判断直线与抛物线交点的个数.
    【详解】
    解:∵直线过一、二、三象限,
    ∴.
    由题意得:,
    即,
    ∵△,
    ∴此方程有两个不相等的实数解.
    ∴直线与抛物线的交点个数为2个.
    故选:C.
    2.(2021·黑龙江中考真题)已知函数,则下列说法不正确的个数是( )
    ①若该函数图像与轴只有一个交点,则
    ②方程至少有一个整数根
    ③若,则的函数值都是负数
    ④不存在实数,使得对任意实数都成立
    A.0 B.1 C.2 D.3
    【答案】C
    【分析】
    对于①:分情况讨论一次函数和二次函数即可求解;
    对于②:分情况讨论a=0和a≠0时方程的根即可;
    对于③:已知条件中限定a≠0且a>1或a<0,分情况讨论a>1或a<0时的函数值即可;
    对于④:分情况讨论a=0和a≠0时函数的最大值是否小于等于0即可.
    【详解】
    解:对于①:当a=0时,函数变为,与只有一个交点,
    当a≠0时,,∴,
    故图像与轴只有一个交点时,或,①错误;
    对于②:当a=0时,方程变为,有一个整数根为,
    当a≠0时,方程因式分解得到:,其中有一个根为,故此时方程至少有一个整数根,故②正确;
    对于③:由已知条件得到a≠0,且a>1或a<0
    当a>1时,开口向上,对称轴为,自变量离对称轴越远,其对应的函数值越大,
    ∵ ,
    ∴离对称轴的距离一样,将代入得到,此时函数最大值小于0;
    当a<0时,开口向下,自变量离对称轴越远,其对应的函数值越小,
    ∴时,函数取得最大值为,
    ∵a<0,
    ∴最大值,即有一部分实数,其对应的函数值,故③错误;
    对于④:a=0时,原不等式变形为:对任意实数不一定成立,故a=0不符合;
    a≠0时,对于函数,
    当a>0时开口向上,总有对应的函数值,此时不存在a对对任意实数都成立;
    当a<0时开口向下,此时函数的最大值为,
    ∵a<0,
    ∴最大值,即有一部分实数,其对应的函数值,
    此时不存在a对对任意实数都成立;故④正确;
    综上所述,②④正确,
    故选:C.
    3.(2021·广东中考真题)若一元二次方程(b,c为常数)的两根满足,则符合条件的一个方程为_____.
    【答案】(答案不唯一)
    【分析】
    设与交点为,根据题意关于y轴对称和二次函数的对称性,可找到的值(只需满足互为相反数且满足即可)即可写出一个符合条件的方程
    【详解】
    设与交点为,
    根据题意

    的对称轴为
    故设
    则方程为:
    故答案为:

    考点4:求二次函数的解析式
    1.二次函数的解析式的确定:
    要确定二次函数的解析式,就是要确定解析式中的待定系数(常数)。
    (1)当已知抛物线上任意三点时,通常将函数的解析式设为一般式;y=ax2+bx+c(a≠0);
    (2)当已知抛物线的顶点坐标和抛物线上另一点时,通常将函数的解析式设为顶点式:y=a(x-h)2+k(a≠0).
    (3)已知抛物线与x轴的两个交点的横坐标,一般选用交点式[y=a(x-x1)(x-x2)].

    【例6】(2021·陕西中考真题)下表中列出的是一个二次函数的自变量x与函数y的几组对应值:


    -2
    0
    1
    3



    6
    -4
    -6
    -4

    下列各选项中,正确的是( )
    A.这个函数的图象开口向下 B.这个函数的图象与x轴无交点
    C.这个函数的最小值小于-6 D.当时,y的值随x值的增大而增大
    【答案】C
    【分析】
    利用表中的数据,求得二次函数的解析式,再配成顶点式,根据二次函数的性质逐一分析即可判断.
    【详解】
    解:设二次函数的解析式为,
    依题意得:,解得:,
    ∴二次函数的解析式为=,
    ∵,
    ∴这个函数的图象开口向上,故A选项不符合题意;
    ∵,
    ∴这个函数的图象与x轴有两个不同的交点,故B选项不符合题意;
    ∵,∴当时,这个函数有最小值,故C选项符合题意;
    ∵这个函数的图象的顶点坐标为(,),
    ∴当时,y的值随x值的增大而增大,故D选项不符合题意;
    故选:C.
    方法技巧



    根据已知条件确定二次函数的解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:
    (1)已知抛物线上三点的坐标,一般选用一般式(y=ax2+bx+c).
    (2)已知抛物线顶点坐标或对称轴或最大(小)值,一般选用顶点式[y=a(x-h)2+k].
    (3)已知抛物线与x轴的两个交点的横坐标,一般选用交点式[y=a(x-x1)(x-x2)].
    (4)已知抛物线上纵坐标相同的两点,常选用顶点式:y=a(x-h)2+k(a≠0)
    【方法解说】(1)若二次公数的图家经过三个已知点可没函数解析式为一般式,即y=ax2+bx+c;
    (2)若知抛物线的顶点坐标,可出数解析式为顶点式,即y=a(x-h)2+k(a≠0),再根据抛物线与y轴的交点求出a的值;
    (3)若抛物线与x轴的两个交点的坐标为(x1,0)和(x2,0),可没函数解析式为交点式,即y=a(x-x1)(x-x2),再根据抛物线与y轴的交点坐标求出a的值
    针对训练


    1.(2021·河南中考真题)请写出一个图象经过原点的函数的解析式__________.
    【答案】y=x(答案不唯一)
    【分析】
    直接写出一个已经学过的经过原点的函数解析式即可.
    【详解】
    解:因为直线y=x经过原点(0,0),
    故答案为:y=x(本题答案不唯一,只要函数图像经过原点即可).
    2.(2021·浙江中考真题)在“探索函数的系数,,与图象的关系”活动中,老师给出了直角坐标系中的四个点:,,,,同学们探索了经过这四个点中的三个点的二次函数的图象,发现这些图象对应的函数表达式各不相同,其中的值最大为( )

    A. B. C. D.
    【答案】A
    【分析】
    分四种情况讨论,利用待定系数法,求过,,,中的三个点的二次函数解析式,继而解题.
    【详解】
    解:设过三个点,,的抛物线解析式为:
    分别代入,,得

    解得;
    设过三个点,,的抛物线解析式为:
    分别代入,,得

    解得;
    设过三个点,,的抛物线解析式为:
    分别代入,,得

    解得;
    设过三个点,,的抛物线解析式为:
    分别代入,,得

    解得;

    最大为,
    故选:A.
    3.(2021·广东中考真题)把抛物线向左平移1个单位长度,再向下平移3个单位长度,得到的抛物线的解析式为___.
    【答案】
    【分析】
    直接根据“上加下减,左加右减”进行计算即可.
    【详解】
    解:抛物线向左平移1个单位长度,
    再向下平移3个单位长度,
    得到的抛物线的解析式为:,
    即:
    故答案为:.

    考点5:二次函数的最值

    【例7】(2021·广东中考真题)我国南宋时期数学家秦九韶曾提出利用三角形的三边求面积的公式,此公式与古希腊几何学家海伦提出的公式如出一辙,即三角形的三边长分别为a,b,c,记,则其面积.这个公式也被称为海伦-秦九韶公式.若,则此三角形面积的最大值为( )
    A. B.4 C. D.5
    【答案】C
    【分析】
    由已知可得a+b=6,,把b=6-a代入S的表达式中得:
    ,由被开方数是二次函数可得其最大值,从而可求得S的最大值.
    【详解】
    ∵p=5,c=4,
    ∴a+b=2p-c=6

    由a+b=6,得b=6-a,代入上式,得:
    设,当取得最大值时,S也取得最大值

    ∴当a=3时,取得最大值4
    ∴S的最大值为
    故选:C.针对训练



    1.(2020•连云港)加工爆米花时,爆开且不糊的粒数的百分比称为“可食用率”.在特定条件下,可食用率y与加工时间x(单位:min)满足函数表达式y=﹣0.2x2+1.5x﹣2,则最佳加工时间为   min.
    【分析】根据二次函数的性质可得.
    【解析】根据题意:y=﹣0.2x2+1.5x﹣2,
    当x=−1.52×(−0.2)=3.75时,y取得最大值,
    则最佳加工时间为3.75min.
    故答案为:3.75.
    2.(2020•哈尔滨)抛物线y=3(x﹣1)2+8的顶点坐标为   .
    【分析】已知抛物线顶点式y=a(x﹣h)2+k,顶点坐标是(h,k).
    【解析】∵抛物线y=3(x﹣1)2+8是顶点式,
    ∴顶点坐标是(1,8).
    故答案为:(1,8).
    3.(2020•南京)小明和小丽先后从A地出发沿同一直道去B地.设小丽出发第xmin时,小丽、小明离B地的距离分别为y1m、y2m.y1与x之间的函数表达式是y1=﹣180x+2250,y2与x之间的函数表达式是y2=﹣10x2﹣100x+2000.
    (1)小丽出发时,小明离A地的距离为   m.
    (2)小丽出发至小明到达B地这段时间内,两人何时相距最近?最近距离是多少?
    【分析】(1)根据题意和函数解析式,可以计算出小丽出发时,小明离A地的距离;
    (2)根据题目中的函数解析式和题意,利用二次函数的性质,可以得到小丽出发至小明到达B地这段时间内,两人何时相距最近,最近距离是多少.
    【解析】(1)∵y1=﹣180x+2250,y2=﹣10x2﹣100x+2000,
    ∴当x=0时,y1=2250,y2=2000,
    ∴小丽出发时,小明离A地的距离为2250﹣2000=250(m),
    故答案为:250;
    (2)设小丽出发第xmin时,两人相距sm,则
    s=(﹣180x+2250)﹣(﹣10x2﹣100x+2000)=10x2﹣80x+250=10(x﹣4)2+90,
    ∴当x=4时,s取得最小值,此时s=90,
    答:小丽出发第4min时,两人相距最近,最近距离是90m.

    考点6:二次函数的应用

    【例8】(2021·山东中考真题)公路上正在行驶的甲车,发现前方20m处沿同一方向行驶的乙车后,开始减速,减速后甲车行驶的路程s(单位:m)、速度v(单位:m/s)与时间t(单位:s) 的关系分别可以用二次函数和一次函数表示,其图象如图所示.
    (1)当甲车减速至9m/s时,它行驶的路程是多少?
    (2)若乙车以10m/s的速度匀速行驶,两车何时相距最近,最近距离是多少?

    【答案】(1)87.5m;(2)6秒时两车相距最近,最近距离是2米
    【分析】
    (1)根据图像分别求出一次函数和二次函数解析式,令v=9求出t,代入求出s即可;
    (2)分析得出当v=10m/s时,两车之间距离最小,代入计算即可.
    【详解】
    解:(1)由图可知:二次函数图像经过原点,
    设二次函数表达式为,一次函数表达式为,
    ∵一次函数经过(0,16),(8,8),
    则,解得:,
    ∴一次函数表达式为,
    令v=9,则t=7,
    ∴当t=7时,速度为9m/s,
    ∵二次函数经过(2,30),(4,56),
    则,解得:,
    ∴二次函数表达式为,
    令t=7,则s==87.5,
    ∴当甲车减速至9m/s时,它行驶的路程是87.5m;
    (2)∵当t=0时,甲车的速度为16m/s,
    ∴当10<v<16时,两车之间的距离逐渐变小,
    当0<v<10时,两车之间的距离逐渐变大,
    ∴当v=10m/s时,两车之间距离最小,
    将v=10代入中,得t=6,
    将t=6代入中,得,
    此时两车之间的距离为:10×6+20-78=2m,
    ∴6秒时两车相距最近,最近距离是2米.
    针对训练



    1.(2020•无锡)有一块矩形地块ABCD,AB=20米,BC=30米.为美观,拟种植不同的花卉,如图所示,将矩形ABCD分割成四个等腰梯形及一个矩形,其中梯形的高相等,均为x米.现决定在等腰梯形AEHD和BCGF中种植甲种花卉;在等腰梯形ABFE和CDHG中种植乙种花卉;在矩形EFGH中种植丙种花卉.甲、乙、丙三种花卉的种植成本分别为20元/米2、60元/米2、40元/米2,设三种花卉的种植总成本为y元.
    (1)当x=5时,求种植总成本y;
    (2)求种植总成本y与x的函数表达式,并写出自变量x的取值范围;
    (3)若甲、乙两种花卉的种植面积之差不超过120平方米,求三种花卉的最低种植总成本.

    【分析】(1)当x=5时,EF=20﹣2x=10,EH=30﹣2x=20,y=2×12(EH+AD)×20x+2×12(GH+CD)×x×60+EF•EH×40,即可求解;
    (2)参考(1),由题意得:y=(30×30﹣2x)•x•20+(20+20﹣2x)•x•60+(30﹣2x)(20﹣2x)•40(0<x<10);
    (3)S甲=2×12(EH+AD)×2x=(30﹣2x+30)x=﹣2x2+60x,S乙=﹣2x2+40x,则﹣2x2+60x﹣(﹣2x2+40x)≤120,即可求解.
    【解析】(1)当x=5时,EF=20﹣2x=10,EH=30﹣2x=20,
    y=2×12(EH+AD)×20x+2×12(GH+CD)×x×60+EF•EH×40=(20+30)×5×20+(10+20)×5×60+20×10×40=22000;
    (2)EF=20﹣2x,EH=30﹣2x,
    参考(1),由题意得:y=(30×30﹣2x)•x•20+(20+20﹣2x)•x•60+(30﹣2x)(20﹣2x)•40=﹣400x+24000(0<x<10);
    (3)S甲=2×12(EH+AD)×2x=(30﹣2x+30)x=﹣2x2+60x,
    同理S乙=﹣2x2+40x,
    ∵甲、乙两种花卉的种植面积之差不超过120米2,
    ∴﹣2x2+60x﹣(﹣2x2+40x)≤120,
    解得:x≤6,
    故0<x≤6,
    而y=﹣400x+24000随x的增大而减小,故当x=6时,y的最小值为21600,
    即三种花卉的最低种植总成本为21600元.
    2.(2021·湖北中考真题)在“乡村振兴”行动中,某村办企业以,两种农作物为原料开发了一种有机产品,原料的单价是原料单价的1.5倍,若用900元收购原料会比用900元收购原料少.生产该产品每盒需要原料和原料,每盒还需其他成本9元.市场调查发现:该产品每盒的售价是60元时,每天可以销售500盒;每涨价1元,每天少销售10盒.
    (1)求每盒产品的成本(成本=原料费+其他成本);
    (2)设每盒产品的售价是元(是整数),每天的利润是元,求关于的函数解析式(不需要写出自变量的取值范围);
    (3)若每盒产品的售价不超过元(是大于60的常数,且是整数),直接写出每天的最大利润.
    【答案】(1)每盒产品的成本为30元.(2);(3)当时,每天的最大利润为16000元;当时,每天的最大利润为元.
    【分析】
    (1)设原料单价为元,则原料单价为元.然后再根据“用900元收购原料会比用900元收购原料少”列分式方程求解即可;
    (2)直接根据“总利润=单件利润×销售数量”列出解析式即可;
    (3)先确定的对称轴和开口方向,然后再根据二次函数的性质求最值即可.
    【详解】
    解:(1)设原料单价为元,则原料单价为元.
    依题意,得.
    解得,,.
    经检验,是原方程的根.
    ∴每盒产品的成本为:(元).
    答:每盒产品的成本为30元.
    (2)

    (3)∵抛物线的对称轴为=70,开口向下
    ∴当时,a=70时有最大利润,此时w=16000,即每天的最大利润为16000元;
    当时,每天的最大利润为元.





    相关试卷

    中考数学一轮复习考点复习专题10 二次函数【考点精讲】(含解析): 这是一份中考数学一轮复习考点复习专题10 二次函数【考点精讲】(含解析),共26页。试卷主要包含了二次函数的一般形式,函数图象和性质等内容,欢迎下载使用。

    初中数学中考复习 专题15 函数与行程问题【考点精讲】(解析版): 这是一份初中数学中考复习 专题15 函数与行程问题【考点精讲】(解析版),共16页。

    初中数学中考复习 专题14 函数与利润问题【考点精讲】(解析版): 这是一份初中数学中考复习 专题14 函数与利润问题【考点精讲】(解析版),共22页。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map