所属成套资源:【精讲精练】2022-2023数学冀教版新中考考点梳理
2022-2023 数学冀教版新中考精讲精练 考点22 平行四边形
展开
这是一份2022-2023 数学冀教版新中考精讲精练 考点22 平行四边形,文件包含2022-2023数学冀教版新中考精讲精练考点22平行四边形解析版docx、2022-2023数学冀教版新中考精讲精练考点22平行四边形原卷版docx等2份试卷配套教学资源,其中试卷共27页, 欢迎下载使用。
考点22 平行四边形
考点总结
知识点一 平行四边形
平行四边形的定义:两组对边分别平行的四边形叫做平行四边形。
平行四边形的表示:用符号“▱”表示,平行四边形ABCD记作“▱ABCD”,读作“平行四边形ABCD”
平行四边形的性质:
1、 平行四边形对边平行且相等;
几何描述:∵四边形ABCD是平行四边形 ∴AB=CD,AD=BC; AB∥CD,AD∥BC
2、平行四边形对角相等、邻角互补;
几何描述:∵四边形ABCD是平行四边形 ∴∠1=∠3,∠2=∠4,∠1+∠4=180°…
3、平行四边形对角线互相平分;
几何描述:∵四边形ABCD是平行四边形 ∴AO=OC=12AC,BO=OD=12BD
4、平行四边形是中心对称图形,但不是轴对称图形,平行四边形的对角线的交点是平行四边形的对称中心。
平行线的性质:
1、平行线间的距离都相等;
2、两条平行线间的任何平行线段都相等;
3、等底等高的平行四边形面积相等。
平行四边形的判定定理(基础):
1、两组对边分别相等的四边形是平行四边形。
2、两组对角分别相等的四边形是平行四边形。
3、对角线互相平分的四边形是平行四边形。
4、一组对边平行且相等的四边形是平行四边形。
平行四边形的面积公式:面积=底×高
知识点二 三角形中位线
三角形中位概念:连接三角形两边中点的线段叫做三角形中位线。
三角形中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半。
几何描述:
∵DE是△ABC的中位线
∴DE∥BC,DE=12BC
真题演练
一.选择题(共10小题)
1.(2021•南皮县一模)如图,在▱ABCD中,AB=3,以点B为圆心,任意长为半径画弧,分别与AB,BC交于点E,F,再分别以点E,F为圆心,大于EF的长为半径画弧,两弧在∠ABC内部相交于点G,作射线BG,交AD边于点H.若cos∠ABH=,则BH的长为( )
A.2 B.3 C.4 D.6
【分析】根据直角三角形的三角函数解答即可.
【解答】解:作AK⊥BH于K,
由题意得BH平分∠ABC,
∴∠ABH=∠HBC,
∵四边形ABCD是平行四边形,
∴AD∥BC,
∴∠AHB=∠HBC,
∴∠ABH=∠AHB,
∴AB=AH,
∴BH=2BK,
∵cos∠ABH=,
∴BK=2,
∴BH=4,
故选:C.
2.(2020•温州)如图,在△ABC中,∠A=40°,AB=AC,点D在AC边上,以CB,CD为边作▱BCDE,则∠E的度数为( )
A.40° B.50° C.60° D.70°
【分析】根据等腰三角形的性质可求∠C,再根据平行四边形的性质可求∠E.
【解答】解:∵在△ABC中,∠A=40°,AB=AC,
∴∠C=(180°﹣40°)÷2=70°,
∵四边形BCDE是平行四边形,
∴∠E=70°.
故选:D.
3.(2021•遵化市一模)平面直角坐标系中,已知▱ABCD的三个顶点坐标分别是A(m,n),B(2,﹣1),C(﹣m,﹣n),则点D的坐标是( )
A.(﹣2,l ) B.(﹣2,﹣l ) C.(﹣1,﹣2 ) D.(﹣1,2 )
【分析】由点的坐标特征得出点A和点C关于原点对称,由平行四边形的性质得出D和B关于原点对称,即可得出点D的坐标.
【解答】解:∵A(m,n),C(﹣m,﹣n),
∴点A和点C关于原点对称,
∵四边形ABCD是平行四边形,
∴D和B关于原点对称,
∵B(2,﹣1),
∴点D的坐标是(﹣2,1).
故选:A.
4.(2020•贵阳模拟)如图,在▱ABCD中,对角线AC的垂直平分线分别交AD、BC于点E、F,连接CE,若△CED的周长为6,则▱ABCD的周长为( )
A.6 B.12 C.18 D.24
【分析】由平行四边形的性质得出DC=AB,AD=BC,由线段垂直平分线的性质得出AE=CE,得出△CDE的周长=AD+DC,即可得出结果.
【解答】解:∵四边形ABCD是平行四边形,
∴DC=AB,AD=BC,
∵AC的垂直平分线交AD于点E,
∴AE=CE,
∴△CDE的周长=DE+CE+DC=DE+AE+DC=AD+DC=6,
∴▱ABCD的周长=2×6=12;
故选:B.
5.(2021•唐山一模)证明:平行四边形的对角线互相平分.
已知:如图四边形ABCD是平行四边形,对角线AC、BD相交于点O.
求证:OA=OC,OB=OD,嘉琪的证明过程如图.
证明过程中,应补充的步骤是( )
A.AB=CD,AD=BC B.AB∥BC,AD=BC
C.AB∥CD,AD∥BC D.AB∥CD,AB=CD
【分析】根据平行四边形的判定和性质即可得到结论.
【解答】证明:∵四边形ABCD是平行四边形,
∴AB∥CD,AB=CD,
∴∠ABO=∠CDO,∠BAO=∠DCO,
∴△AOB≌△COD(ASA),
∴OA=OC,OB=OD,
故选:D.
6.(2021•河北)如图1,▱ABCD中,AD>AB,∠ABC为锐角.要在对角线BD上找点N,M,使四边形ANCM为平行四边形,现有图2中的甲、乙、丙三种方案,则正确的方案( )
A.甲、乙、丙都是 B.只有甲、乙才是
C.只有甲、丙才是 D.只有乙、丙才是
【分析】方案甲,连接AC,由平行四边形的性质得OB=OD,OA=OC,则NO=OM,得四边形ANCM为平行四边形,方案甲正确;
方案乙:证△ABN≌△CDM(AAS),得AN=CM,再由AN∥CM,得四边形ANCM为平行四边形,方案乙正确;
方案丙:证△ABN≌△CDM(ASA),得AN=CM,∠ANB=∠CMD,则∠ANM=∠CMN,证出AN∥CM,得四边形ANCM为平行四边形,方案丙正确.
【解答】解:方案甲中,连接AC,如图所示:
∵四边形ABCD是平行四边形,O为BD的中点,
∴OB=OD,OA=OC,
∵BN=NO,OM=MD,
∴NO=OM,
∴四边形ANCM为平行四边形,方案甲正确;
方案乙中:
∵四边形ABCD是平行四边形,
∴AB=CD,AB∥CD,
∴∠ABN=∠CDM,
∵AN⊥BD,CM⊥BD,
∴AN∥CM,∠ANB=∠CMD,
在△ABN和△CDM中,
,
∴△ABN≌△CDM(AAS),
∴AN=CM,
又∵AN∥CM,
∴四边形ANCM为平行四边形,方案乙正确;
方案丙中:∵四边形ABCD是平行四边形,
∴∠BAD=∠BCD,AB=CD,AB∥CD,
∴∠ABN=∠CDM,
∵AN平分∠BAD,CM平分∠BCD,
∴∠BAN=∠DCM,
在△ABN和△CDM中,
,
∴△ABN≌△CDM(ASA),
∴AN=CM,∠ANB=∠CMD,
∴∠ANM=∠CMN,
∴AN∥CM,
∴四边形ANCM为平行四边形,方案丙正确;
故选:A.
7.(2021•邯郸模拟)如图,在平行四边形ABCD中,点E,F分别在AB,CD上,且AE=CF.求证:DE=BF.以下是排乱的证明过程:
①∵AE=CF,∴BE=FD;
②∵四边形ABCD是平行四边形,
∴AB=CD,AB∥CD;
③∴DE=BF,
④∴四边形EBFD是平行四边形.
证明步骤正确的顺序是( )
A.①→②→③→④ B.①→④→②→③ C.②→①→④→③ D.②→④→①→③
【分析】由平行四边形的性质得AB=CD,AB∥CD,再证BE=FD,得四边形EBFD是平行四边形,即可得出结论.
【解答】解:∵四边形ABCD是平行四边形,
∴AB=CD,AB∥CD,
∵AE=CF,
∴BE=FD,
∴四边形EBFD是平行四边形,
∴DE=BF,
则证明步骤正确的顺序是②→①→④→③,
故选:C.
8.(2021•新华区校级模拟)如图,平行四边形ABCD中,E、F分别在边BC、AD上,添加条件后不能使AE=CF的是( )
A.BE=DF
B.AE∥CF
C.AF=AE
D.四边形AECF为平行四边形
【分析】利用平行四边形的性质,依据平行四边形的判定方法,即可得出不能使AE=CF的条件.
【解答】解:A、在▱ABCD中,
∴AD∥BC,AD=BC,
∵BE=DF,
∴AF=CE,
∴四边形AECF是平行四边形,
∴AE=CF,
故A可以使AE=CF,不符合题意;
B、∵AE∥CF,AF∥CE,
∴四边形AECF是平行四边形,
∴AE=CF,
故B可以使AE=CF,不符合题意;
C、添加AE=AF后不能使AE=CF,
故C符合题意;
D、∵四边形AECF是平行四边形,
∴AE=CF,
故D可以使AE=CF,不符合题意;
故选:C.
9.(2021•邢台模拟)证明:平行四边形的对角线互相平分.
已知:如图,四边形ABCD是平行四边形,对角线AC、BD相交于点O.
求证:OA=OC,OB=OD.
证明:∵四边形ABCD是平行四边形,
∴…
∴∠ABO=∠CDO,∠BAO=∠DCO.
∴△AOB≌△COD.
∴OA=OC,OB=OD.
其中,在“四边形ABCD是平行四边形”与“∠ABO=∠CDO,∠BAO=∠DCO”之间应补充的步骤是( )
A.AB=CD,AD=BC B.AD∥BC,AD=BC
C.AB∥CD,AD∥BC D.AB∥CD,AB=CD
【分析】根据平行四边形的判定和性质即可得到结论.
【解答】证明:∵四边形ABCD是平行四边形,
∴AB∥CD,AB=CD,
∴∠ABO=∠CDO,∠BAO=∠DCO.
∴△AOB≌△COD(ASA).
∴OA=OC,OB=OD.
故选:D.
10.(2020•黔西南州模拟)如图,在▱ABCD中,已知AC=4cm,若△ACD的周长为13cm,则▱ABCD的周长为( )
A.26cm B.24cm C.20cm D.18cm
【分析】根据三角形周长的定义得到AD+DC=9cm.然后由平行四边形的对边相等的性质来求平行四边形的周长.
【解答】解:∵AC=4cm,若△ADC的周长为13cm,
∴AD+DC=13﹣4=9(cm).
又∵四边形ABCD是平行四边形,
∴AB=CD,AD=BC,
∴平行四边形的周长为2(AB+BC)=18cm.
故选:D.
二.填空题(共5小题)
11.(2020•高碑店市一模)如图,在Rt△ABC中,AC=5,∠B=30°,点P,Q分别是边AB,AC上的点.BP=2AQ,PD⊥BC于点D.当PQ⊥DQ时,AQ= 4 .
【分析】设AQ=x,依据PD=BP=AQ,PD∥AQ,判定四边形PAQD是平行四边形,再根据∠AQP=30°,即可得出AQ=2AP,进而得到方程x=2(10﹣2x),解方程即可得出结论.
【解答】解:设AQ=x,
∵PD⊥BC,∠B=30°,BP=2AQ=2x,
∴Rt△BDP中,PD=BP=AQ,
∵∠C=∠BDP=90°,
∴PD∥AQ,
∴四边形PAQD是平行四边形,
当PQ⊥DQ时,∠APQ=90°,
又∵∠A=60°,
∴∠AQP=30°,
∴AQ=2AP,
即x=2(10﹣2x),
解得x=4,
∴AQ=4,
故答案为:4.
12.(2020•唐山一模)有一边长为10m的等边△ABC游乐场,某人从边AB中点P出发,先由点P沿平行于BC的方向运动到AC边上的点P1,再由P1沿平行于AB方向运动到BC边上的点P2,又由点P2沿平行于AC方向运动到AB边上的点P3,则此人至少要运动 15 m,才能回到点P.此人从AB边上任意一点(中点除外)出发,按照上面的规律运动,则此人至少走 30 m,就能回到起点.
【分析】若某人从边AB中点P出发,由平行四边形的判定可证四边形BPP1P2是平行四边形,四边形PP1CP2是平行四边形,由平行四边形的性质可得PP1=BP2=P2C=5m,即可求解;
若某人从边AB边上任意一点出发,由平行四边形的判定可证四边形BPP1P2是平行四边形,四边形PP1CP5是平行四边形,四边形AP3P2P1是平行四边形,四边形APP5P4是平行四边形,四边形P3P4CP2是平行四边形,由平行四边形的性质可求解.
【解答】解:若某人从边AB中点P出发,
∵P是AB中点,AB=10m,
∴AP=BP=5m,
∵PP1∥BC,P1P2∥AB,PP2∥AC,
∴四边形BPP1P2是平行四边形,四边形PP1CP2是平行四边形,
∴PP1=BP2=P2C,
∴PP1=BP2=P2C=5m,
同理可求P2P1=5m,P2P=5m,
∴PP1+P2P1+P2P=15m,
∴此人至少要运动15m,才能回到点P;
若某人从边AB边上任意一点出发,
同理可证:四边形BPP1P2是平行四边形,四边形PP1CP5是平行四边形,四边形AP3P2P1是平行四边形,四边形APP5P4是平行四边形,四边形P3P4CP2是平行四边形,
∴PP1=BP2,P1P2=BP,PP5=P1C,P4P5=AP,P2P3=AP1,P3P4=P2C,
∵PP1+P1P2+P2P3+P3P4+P4P5+P5P=BP2+BP+AP1+P2C+AP+P1C=AB+AC+BC=30m,
故答案为:15,30.
13.(2020•顺平县一模)如图,▱ABCD中,AB=7,BC=5.CH⊥AB于点H,CH=4,点P从点D出发,以每秒1个单位长度的速度沿DC﹣CH向点H运动,到点H停止,设点P的运动时间为t.
(1)AH= 4 ;
(2)若△PBC是等腰三角形,则t的值为 2或 .
【分析】(1)根据BC=5,CH=4,CH⊥AB,利用勾股定理,可以得到BH的长,然后根据AB=7,即可得到AH的长;
(2)根据题意和等腰三角形的性质,利用分类讨论的方法,可以得到t的值,本题得以解决.
【解答】解:(1)∵BC=5,CH=4,CH⊥AB,
∴∠CHB=90°,
∴BH===3,
∵AB=7,
∴AH=AB﹣BH=7﹣3=4,
故答案为:4;
(2)当点P在DC边上时,
∵△PBC是等腰三角形,
∴PC=BC,
∵BC=5,
∴PC=5,
∵四边形ABCD是平行四边形,AB=7,
∴CD=AB=7,
∴DP=DC﹣PC=7﹣5=2,
∴t=2÷1=2;
当点P在CH上时,
∵△PBC是等腰三角形,
∴PC=PB,
∵PC=t﹣7,
∴PH=7+4﹣t=11﹣t,
∵BH=3,∠BHP=90°,BP=PC=t﹣7,
∴32+(11﹣t)2=(t﹣7)2,
解得,t=;
由上可得,t的值是2或,
故答案为:2或.
14.(2020•河北模拟)如图,已知平行四边形AOBC的顶点O(0,0),A(﹣1,2),点B在x轴正半轴上.
按以下步骤作图:
①以点O为圆心,适当长度为半径作弧,分别交边OA,OB于点D,E;
②分别以点D,E为圆心,大于DE的长为半径作弧,两弧在∠AOB内交于点F;
③作射线OF,交边AC于点G.
则点G的坐标为 (﹣1,2) .
【分析】依据勾股定理即可得到Rt△AOH中,AO=,依据∠AGO=∠AOG,即可得到AG=AO=,进而得出HG=﹣1,可得G的坐标.
【解答】解:如图所示:
∵▱AOBC的顶点O(0,0),A(﹣1,2),
∴AH=1,HO=2,
∴Rt△AOH中,AO=,
由题可得,OF平分∠AOB,
∴∠AOG=∠EOG,
又∵AG∥OE,
∴∠AGO=∠EOG,
∴∠AGO=∠AOG,
∴AG=AO=,
∴HG=﹣1,
∴G(﹣1,2);
故答案为:(﹣1,2).
15.(2020•泉州模拟)如图,在四边形ABCD中,AB∥DC,E是AD中点,EF⊥BC于点F,BC=5,EF=3.
(1)若AB=DC,则四边形ABCD的面积S= 15 ;
(2)若AB>DC,则此时四边形ABCD的面积S′ = S(用“>”或“=”或“<”填空).
【分析】(1)若AB=DC,则四边形ABCD是平行四边形,据此求出它的面积是多少即可.
(2)连接EC,延长CD、BE交于点P,证△ABE≌△DPE可得S△ABE=S△DPE、BE=PE,由三角形中线性质可知S△BCE=S△PCE,最后结合S四边形ABCD=S△ABE+S△CDE+S△BCE可得答案.
【解答】解:(1)∵AB=DC,AB∥DC,
∴四边形ABCD是平行四边形,
∴四边形ABCD的面积S=5×3=15,
故答案为:15.
(2)如图,连接EC,延长CD、BE交于点P,
∵E是AD中点,
∴AE=DE,
又∵AB∥CD,
∴∠ABE=∠P,∠A=∠PDE,
在△ABE和△DPE中,
∵,
∴△ABE≌△DPE(AAS),
∴S△ABE=S△DPE,BE=PE,
∴S△BCE=S△PCE,
则S四边形ABCD=S△ABE+S△CDE+S△BCE
=S△PDE+S△CDE+S△BCE
=S△PCE+S△BCE
=2S△BCE
=2××BC×EF
=15,
∴当AB>DC,则此时四边形ABCD的面积S′=S,
故答案为:=.
三.解答题(共2小题)
16.(2020•邢台模拟)已知在△ABC中,AB=AC,点D在BC上,以AD、AE为腰做等腰三角形ADE,且∠ADE=∠ABC,连接CE,过E作EM∥BC交CA延长线于M,连接BM.
(1)求证:△BAD≌△CAE;
(2)若∠ABC=30°,求∠MEC的度数;
(3)求证:四边形MBDE是平行四边形.
【分析】(1)证明∠BAC=∠DAE,得出∠BAD=∠CAE,由SAS即可得出结论;
(2)求出∠ACB=∠ACE=30°,由平行线的性质得出∠MEC+∠ECD=180°,即可得出结果;
(3)由△BAD≌△CAE,得出DB=CE,再证明∠ACE=∠EMC,得出ME=EC,推出DB=ME,即可得出结论.
【解答】(1)证明:∵AB=AC,
∴∠ABC=∠ACB,
∴∠BAC=180°﹣2∠ABC,
∵以AD、AE为腰做等腰三角形ADE,
∴AD=AE,
∴∠ADE=∠AED,
∴∠DAE=180°﹣2∠ADE,
∵∠ADE=∠ABC,
∴∠BAC=∠DAE,
∴∠BAC﹣∠CAD=∠DAE﹣∠CAD,
∴∠BAD=∠CAE,
在△BAD和△CAE中,,
∴△BAD≌△CAE(SAS);
(2)解:∵AB=AC,
∴∠ACB=∠ABC=30°,
∵△BAD≌△CAE,
∴∠ABD=∠ACE=30°,
∴∠ACB=∠ACE=30°,
∴∠ECB=∠ACB+∠ACE=60°,
∵EM∥BC,
∴∠MEC+∠ECD=180°,
∴∠MEC=180°﹣60°=120°;
(3)证明:∵△BAD≌△CAE,
∴DB=CE,∠ABD=∠ACE,
∵AB=AC,
∴∠ABD=∠ACB,
∴∠ACB=∠ACE,
∵EM∥BC,
∴∠EMC=∠ACB,
∴∠ACE=∠EMC,
∴ME=EC,
∴DB=ME,
又∵EM∥BD,
∴四边形MBDE是平行四边形.
17.(2020•曲阳县模拟)如图,平行四边形ABCD内一点E,满足ED⊥AD于D,延长DE交BC于F,且∠EBC=∠EDC,∠ECB=45°,找出图中一条与EB相等的线段,并加以证明.
【分析】延长DE,交BC于F,由平行四边形的性质可得到∠BFE=∠DFC=90°,由已知可推EF=FC,已知∠EBC=∠EDC,则可以利用AAS来判定△BEF≌△DCF,从而得到CD=BE.
【解答】解:CD=BE.
证明:如图,延长DE交BC于F,
∵AD∥BC,ED⊥AD,
∴DF⊥BC,
∴∠BFE=∠DFC=90°,
又∵∠ECB=45°,
∴∠FEC=∠ECB=45°,
∴FE=FC,
∵∠EBC=∠EDC,
∴△BEF≌△DCF(AAS),
∴CD=BE.
相关试卷
这是一份2022-2023 数学浙教版新中考精讲精练 考点22特殊的平行四边形,文件包含2022-2023数学浙教版新中考精讲精练考点22特殊的平行四边形解析版docx、2022-2023数学浙教版新中考精讲精练考点22特殊的平行四边形原卷版docx等2份试卷配套教学资源,其中试卷共43页, 欢迎下载使用。
这是一份2022-2023 数学鲁教版新中考精讲精练 考点22 视图与投影,文件包含2022-2023数学鲁教版新中考精讲精练考点22视图与投影解析版docx、2022-2023数学鲁教版新中考精讲精练考点22视图与投影原卷版docx等2份试卷配套教学资源,其中试卷共17页, 欢迎下载使用。
这是一份2022-2023 数学冀教版新中考精讲精练 考点29 相似形,文件包含2022-2023数学冀教版新中考精讲精练考点29相似形解析版docx、2022-2023数学冀教版新中考精讲精练考点29相似形原卷版docx等2份试卷配套教学资源,其中试卷共26页, 欢迎下载使用。