|试卷下载
搜索
    上传资料 赚现金
    2022-2023学年上海市中考数学专项提升仿真模拟试题(一模二模)含解析
    立即下载
    加入资料篮
    2022-2023学年上海市中考数学专项提升仿真模拟试题(一模二模)含解析01
    2022-2023学年上海市中考数学专项提升仿真模拟试题(一模二模)含解析02
    2022-2023学年上海市中考数学专项提升仿真模拟试题(一模二模)含解析03
    还剩65页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022-2023学年上海市中考数学专项提升仿真模拟试题(一模二模)含解析

    展开
    这是一份2022-2023学年上海市中考数学专项提升仿真模拟试题(一模二模)含解析,共68页。试卷主要包含了平方米等内容,欢迎下载使用。

    2022-2023学年上海市中考数学专项提升仿真模拟试题
    (一模)
    一.选择题(共6小题,满分24分,每小题4分)中考
    1.(4分)(2021秋•新都区期末)一张比例尺为1:1000的图纸上,一块多边形地区的面积是260平方厘米,则该地区的实际面积是(  )平方米.
    A.B.260000000 C.26000 D.
    2.(4分)(2021秋•川汇区期末)如图,在平面直角坐标系中,AB是⊙M的直径,若A(a,b),M(1,0),则点B的坐标是(  )

    A.(2﹣a,﹣b) B.(1﹣a,﹣b) C.(﹣a,﹣b) D.(a﹣2,﹣b)
    3.(4分)(2022•普陀区二模)已知||=1,||=2,且与的方向相反,那么下列结论中正确的是(  )
    A.=2 B.=﹣2 C.=2 D.=﹣2
    4.(4分)(2021秋•文山市期末)直角三角形两直角边长度为5,12,则斜边上的高(  )
    A.6 B.8 C. D.
    5.(4分)(2021秋•礼泉县期末)一组数据:1,0,4,5,x,8.若它们的中位数是3,则x的值是(  )
    A.2 B.3 C.4 D.5中考
    6.(4分)(2022•武汉模拟)定义:由a,b构造的二次函数y=ax2+(a+b)x+b叫做一次函数y=ax+b的“滋生函数”.若一次函数y=ax+b的“滋生函数”是y=ax2﹣3x+a+1,t是关于x的方程x2+bx+a﹣b=0的根,且t>0,则t3﹣2t2+1的值为(  )
    A.0 B.1 C.+1 D.3﹣
    二.填空题(共12小题,满分48分,每小题4分)中考
    7.(4分)(2021秋•松江区期末)已知,AB=8,P是AB黄金分割点,PA>PB,则PA的长为   .中考
    8.(4分)(2022•庆云县模拟)如图,在Rt△ABC中,∠A=90°,作BC的垂直平分线交AC于点D,连接BD,若AD=BD,则tan∠ABC的值为    .中考

    9.(4分)(2022•市北区一模)某大型商场为了吸引顾客,规定凡在本商场一次性消费100元的顾客可以参加一次摇奖活动,摇奖规则如下:一个不透明的纸箱里装有1个红球、2个黄球、5个绿球、12个白球,所有球除颜色外完全相同,充分掘匀后,从中随机取出一球,若取出的球分别是红、黄、绿球,顾客将分别获得50元、25元、20元现金,若取出白球则没有奖.若某位顾客有机会参加摇奖活动,则他每参与一次的平均收益为    元.
    10.(4分)(2022春•金山区校级期中)如图,点G是△ABC的重心,过点G作EF∥BC,分别交AB、AC于点E、F,如果,那么=   .中考

    11.(4分)(2021秋•南召县月考)如图所示,某商场要在一楼和二楼之间搭建扶梯BC,已知一楼与二楼之间的地面高度差为3.5米,扶梯BC的坡度,则扶梯BC的长度为    米.中考

    12.(4分)(2021秋•凤凰县期末)如图,万名塔,位于凤凰古城沙湾的沱江之滨,于1988年建成,该塔是一个六角塔,如果它的地基是半径为2米的正六边形,那么这个地基的周长是    米.

    13.(4分)(2021秋•中山市期末)已知⊙A的半径为5,圆心A(4,3),坐标原点O与⊙A的位置关系是    .中考
    14.(4分)(2021秋•济阳区期末)如果A(0,3),B(m,3)是抛物线y=a(x﹣2)2上两个不同的点,那么m的值为     .
    15.(4分)(2022春•杨浦区校级期中)▱ABCD的周长为64cm,BC上高AE=6cm,CD上高AF=10cm,则△BCD的面积为    .
    16.(4分)(2021秋•兴化市期末)如图,已知二次函数y1=ax2+bx+c(a≠0)与一次函数y2=kx+m(k≠0)的图象相交于点A(﹣2,4)和B(8,2),若无论x取何值,S总取y1,y2中的最大值,则S的最小值是    .中考

    17.(4分)(2021秋•武侯区期末)如图,正方形ABCD的对角线相交于点O,正方形A'B'C'O与正方形ABCD的边长相等,若两个正方形的重叠部分(阴影部分)的面积为,则正方形A'B'C'O的面积为    .

    18.(4分)(2021秋•黄浦区期末)如图,在△ABC中,AB=4,AC=5,将△ABC绕点A旋转,使点B落在AC边上的点D处,点C落在点E处,如果点E恰好在线段BD的延长线上,那么边BC的长等于    .中考

    三.解答题(共7小题,满分78分)中考
    19.(10分)(2021秋•长宁区期末)计算:cot30°﹣.
    20.(10分)(2022•黄岛区一模)跳台滑雪是以滑雪板为工具,在专设的跳台上以自身的体重通过助滑坡获得的速度比跳跃距离和动作姿势的一种雪上竞技项目.如图是某跳台滑雪训练场的横截面示意图,取某一位置的水平线为x轴,过跳台终点A作水平线的垂线为y轴,建立平面直角坐标系.图中的抛物线近似表示滑雪场地上的一座小山坡,某运动员从点O正上方3米的A点滑出,滑出后沿一段抛物线运动,当运动员运动到例A处的水平距离为4米时,例水平线的高度为7米.
    (1)求抛物线C2的函数解析式;中考
    (2)当运动员与点A的水平距离是多少米时,运动员和小山坡到水平线的高度相同;中考
    (3)运动员从A点滑出后直至和小山坡到水平线的高度相同时,运动员与小山坡的高度差最大是多少米?

    21.(10分)(2021秋•开福区校级期末)如图,在四边形ABCD中,BD所在的直线垂直平分线段AC,过点A作AF∥BC交CD于F,延长AB、DC交于点E.
    (1)求证:AC平分∠EAF;
    (2)求证:∠FAD=∠E;
    (3)若∠EAD=90°,AE=5,AF=3,求CF的长.中考

    22.(10分)(2021•溧阳市一模)“只要人人献出一点爱,世界将变成美好的人间”.某单位利用“世界献血日”开展自愿义务献血活动,经过检测,献血者血型有“A、B、AB、O”四种类型,随机抽取部分献血结果进行统计,根据结果制作了如图两幅不完整统计图表(表、图).中考
    血型统计表:中考
    血型中考
    A中考
    B
    AB中考
    O
    人数
       
    10
    5
       
    血型统计图:中考
    (1)本次随机抽取献血者人数为   人,图中m=   ;中考
    (2)补全表中的数据;
    (3)若这次活动中该单位有1300人义务献血,估计大约有多少人是A型血?

    23.(12分)(2022春•汉阳区校级月考)如图,AB是⊙O的直径,点C,D为⊙O上两点,CE是⊙O的切线,CE⊥BD于点E,连接BC交AD于点F.
    (1)求证:点C是的中点;
    (2)若,求tan∠BAD的值.
    中考
    24.(12分)(2021秋•重庆期末)如图,在平面直角坐标系中,抛物线y=x2+bx+c与直线AB交于A,B两点,其中A(0,1),B(4,﹣1).中考
    (1)求该抛物线的函数表达式;中考
    (2)点P,Q为直线AB下方抛物线上任意两点,且满足点P的横坐标为m,点Q的横坐标为m+1,过点P和点Q分别作y轴的平行线交直线AB于C点和D点,连接PQ,求四边形PQDC面积的最大值;
    (3)在(2)的条件下,将抛物线y=x2+bx+c沿射线AB平移2个单位,得到新的抛物线y1,点E为点P的对应点,点F为y1的对称轴上任意一点,点G为平面直角坐标系内一点,当点B,E,F,G构成以EF为边的菱形时,直接写出所有符合条件的点G的坐标,并任选其中一个点的坐标,写出求解过程.
    中考
    25.(14分)(2022春•朝阳区校级月考)【模型构建】如图1,在四边形ABCD中,∠ABC+∠ADC=180°,AB=AD,∠ACD=45°,AC=3.求四边形ABCD的面积.琪琪同学的做法是:延长CD至E点,使DE=BC,连结AE.易证△ABC≌△ADE.进而把四边形ABCD的面积转化为△ACE的面积,则四边形ABCD的面积为    .中考
    【应用】如图2,⊙O为△ABC的外接圆,AB是直径,AC=BC,点D是直径AB左侧的圆上一点,连接DA,DB,DC.若CD=4,求四边形ADBC的面积;
    【灵活运用】如图3,在四边形ADBC中,连结AB、CD,∠CAB=∠ACB=∠BDC=60°,四边形ADBC的面积为,则线段CD=   .


    2022-2023学年上海市中考数学专项提升仿真模拟试题
    (一模)
    一.选择题(共6小题,满分24分,每小题4分)
    1.(4分)(2021秋•新都区期末)一张比例尺为1:1000的图纸上,一块多边形地区的面积是260平方厘米,则该地区的实际面积是(  )平方米.
    A.B.260000000 C.26000 D.
    【考点】比例线段.
    【专题】图形的相似;应用意识.
    【分析】相似多边形的面积之比等于相似比的平方,据此求解,注意单位.
    解:设该地区的实际面积是xcm2,由题意得,
    260:x=(1:1000)2,
    解得,x=260000000,中考
    260000000cm2=26000m2,
    故选:C.中考
    【点评】本题考查相似多边形的性质.相似多边形对应边之比、周长之比等于相似比,而面积之比等于相似比的平方.
    2.(4分)(2021秋•川汇区期末)如图,在平面直角坐标系中,AB是⊙M的直径,若A(a,b),M(1,0),则点B的坐标是(  )

    A.(2﹣a,﹣b) B.(1﹣a,﹣b) C.(﹣a,﹣b) D.(a﹣2,﹣b)
    【考点】坐标与图形性质.
    【专题】圆的有关概念及性质;推理能力.
    【分析】设点B的坐标为(x,y),利用M点为AB的中点得到1=,0=,然后求出x、y得到B点坐标.中考
    解:设点B的坐标为(x,y),
    ∵AB是⊙M的直径,
    ∴M点为AB的中点,
    而A(a,b),M(1,0),
    ∴1=,0=,
    解得x=2﹣a,y=﹣b,中考
    ∴B点坐标为(2﹣a,﹣b).
    故选:A.
    【点评】本题考查了坐标与图形性质,灵活运用线段的中点坐标公式是解决问题的关键.
    3.(4分)(2022•普陀区二模)已知||=1,||=2,且与的方向相反,那么下列结论中正确的是(  )
    A.=2 B.=﹣2 C.=2 D.=﹣2
    【考点】*平面向量.
    【专题】三角形.中考
    【分析】根据平面向量的性质即可解决问题.中考
    解:∵||=1,||=2,且与的方向相反,
    ∴=﹣2,中考
    故选:D.
    【点评】本题考查平面向量的性质,解题的关键是熟练掌握基本知识,属于中考常考题型.
    4.(4分)(2021秋•文山市期末)直角三角形两直角边长度为5,12,则斜边上的高(  )中考
    A.6 B.8 C. D.
    【考点】勾股定理.中考
    【分析】首先根据勾股定理,得:斜边==13.再根据直角三角形的面积公式,求出斜边上的高.中考
    解:由题意得,斜边为=13.所以斜边上的高=12×5÷13=.
    故选:D.
    【点评】运用了勾股定理.注意:直角三角形斜边上的高等于两条直角边的乘积除以斜边.
    5.(4分)(2021秋•礼泉县期末)一组数据:1,0,4,5,x,8.若它们的中位数是3,则x的值是(  )
    A.2 B.3 C.4 D.5
    【考点】中位数.中考
    【专题】统计的应用;推理能力.
    【分析】利用中位数的定义,只有x和4的平均数可能为3,从而得到x的值.中考
    解:除x外5个数由小到大排列为0,1,4,5,8,中考
    因为原数据有6个数,
    因这组数据的中位数是3;中考
    所以,只有x+4=2×3才成立,
    即x=2.中考
    故选:A.中考
    【点评】本题考查了中位数:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.
    6.(4分)(2022•武汉模拟)定义:由a,b构造的二次函数y=ax2+(a+b)x+b叫做一次函数y=ax+b的“滋生函数”.若一次函数y=ax+b的“滋生函数”是y=ax2﹣3x+a+1,t是关于x的方程x2+bx+a﹣b=0的根,且t>0,则t3﹣2t2+1的值为(  )
    A.0 B.1 C.+1 D.3﹣
    【考点】抛物线与x轴的交点;一次函数的性质.
    【专题】二次函数图象及其性质;运算能力;推理能力.
    【分析】根据“滋生函数”的定义可得ax2﹣3x+a+1=ax2+(a+b)x+b,从而可得关于a,b的二元一次方程组,求出a,b的值,进而求解.
    解:∵y=ax+b的“滋生函数”是y=ax2﹣3x+a+1,
    ∴ax2﹣3x+a+1=ax2+(a+b)x+b,即,
    解得,
    ∵t是关于x的方程x2+bx+a﹣b=0的根,
    ∴t2﹣t﹣1=0,中考
    ∴t3﹣2t2+1=t(t+1)﹣2t2+1=﹣t2+t+1=﹣1+1=0.中考
    故选:A.
    【点评】本题考查函数的新定义问题,解题关键是理解题意,根据“滋生函数”的定义找出等量关系.中考
    二.填空题(共12小题,满分48分,每小题4分)
    7.(4分)(2021秋•松江区期末)已知,AB=8,P是AB黄金分割点,PA>PB,则PA的长为  .
    【考点】黄金分割.
    【专题】计算题.中考
    【分析】根据黄金分割点的定义,知PA是较长线段;则PA=AB,代入数据即可.
    解:由于P为线段AB=8的黄金分割点,中考
    且PA>PB,中考
    则PA=8×=4﹣4.
    故本题4﹣4.中考
    【点评】理解黄金分割点的概念.熟记黄金比的值进行计算.中考
    8.(4分)(2022•庆云县模拟)如图,在Rt△ABC中,∠A=90°,作BC的垂直平分线交AC于点D,连接BD,若AD=BD,则tan∠ABC的值为   .

    【考点】解直角三角形;线段垂直平分线的性质.
    【专题】计算题;解直角三角形及其应用;运算能力.中考
    【分析】利用线段垂直平分线的性质说明BD与CD的关系,再在Rt△ABD中利用勾股定理求出AB,最后在Rt△ABC中求出∠ABC的正切.
    解:∵D是BC垂直平分线上的点,
    ∴BD=CD.
    设AD的长为m,则BD=CD=3m,AC=4m.中考
    在Rt△ABD中,
    AB=

    =2m.中考
    在Rt△ABC中,
    tan∠ABC=中考
    =中考
    =.
    【点评】本题考查了解直角三角形,掌握勾股定理及直角三角形的边角间关系是解决本题的关键.
    9.(4分)(2022•市北区一模)某大型商场为了吸引顾客,规定凡在本商场一次性消费100元的顾客可以参加一次摇奖活动,摇奖规则如下:一个不透明的纸箱里装有1个红球、2个黄球、5个绿球、12个白球,所有球除颜色外完全相同,充分掘匀后,从中随机取出一球,若取出的球分别是红、黄、绿球,顾客将分别获得50元、25元、20元现金,若取出白球则没有奖.若某位顾客有机会参加摇奖活动,则他每参与一次的平均收益为  10 元.中考
    【考点】算术平均数.
    【专题】数据的收集与整理;数据分析观念.
    【分析】求出任摸一球,摸到红球、黄球、绿球和白球的概率,那么获奖的平均收益可以加权平均数的方法求得.
    解:50×+25×+20×+0×=10(元),中考
    答:他每参与一次的平均收益为10元.
    故10.
    【点评】本题考查概率的计算和加权平均数的计算方法,理解获奖平均收益实际就是求各种奖项的加权平均数.
    10.(4分)(2022春•金山区校级期中)如图,点G是△ABC的重心,过点G作EF∥BC,分别交AB、AC于点E、F,如果,那么=  .

    【考点】三角形的重心;*平面向量;平行线的性质.中考
    【专题】三角形;推理能力;应用意识.
    【分析】连接AG,延长AG交BC于点T.由EF∥BC,推出==2,推出=,推出==,可得结论.
    解:连接AG,延长AG交BC于点T.
    ∵G是△ABC的重心,中考
    ∴AG=2GT,中考
    ∵EF∥BC,
    ∴==2,
    ∴=,中考
    ∴==,中考
    ∴BC=EF,中考
    ∴=.
    故.

    【点评】本题考查三角形的重心,平行线的性质,平行线分线段成比例定理等知识,解题的关键是掌握三角形重心的性质,灵活运用所学知识解决问题.
    11.(4分)(2021秋•南召县月考)如图所示,某商场要在一楼和二楼之间搭建扶梯BC,已知一楼与二楼之间的地面高度差为3.5米,扶梯BC的坡度,则扶梯BC的长度为  7 米.

    【考点】解直角三角形的应用﹣坡度坡角问题.
    【专题】解直角三角形及其应用;应用意识.
    【分析】根据坡度的概念、正切的定义以及特殊角的三角函数值求出∠B,根据含30°角的直角三角形的性质计算即可.中考
    解:∵扶梯BC的坡度为:3,中考
    ∴tanB=,
    ∴∠B=30°,
    ∴BC=2×3.5=7(米),中考
    故7.
    【点评】本题考查的是坡度的概念,掌握坡度是坡面的铅直高度h和水平宽度l的比是解题的关键.
    12.(4分)(2021秋•凤凰县期末)如图,万名塔,位于凤凰古城沙湾的沱江之滨,于1988年建成,该塔是一个六角塔,如果它的地基是半径为2米的正六边形,那么这个地基的周长是  12 米.中考

    【考点】正多边形和圆.中考
    【专题】正多边形与圆;应用意识.
    【分析】由正六边形的半径为2,则OA=OB=2米;由∠AOB=60°,得出△AOB是等边三角形,则AB=OA=OB=2米,即可得出结果.中考
    解:如图所示:中考
    ∵正六边形的半径为2米,
    ∴OA=OB=2米,
    ∴正六边形的中心角∠AOB==60°,中考
    ∴△AOB是等边三角形,
    ∴AB=OA=OB,
    ∴AB=2米,
    ∴正六边形的周长为6×2=12(米);中考
    故12.

    【点评】本题考查了正六边形的性质、等边三角形的判定与性质;解决正多边形的问题,常常把多边形问题转化为等腰三角形或直角三角形来解决.
    13.(4分)(2021秋•中山市期末)已知⊙A的半径为5,圆心A(4,3),坐标原点O与⊙A的位置关系是  在⊙A上 .中考
    【考点】点与圆的位置关系;坐标与图形性质.
    【专题】与圆有关的位置关系;推理能力.中考
    【分析】先根据两点间的距离公式计算出OA,然后根据点与圆的位置关系的判定方法判断点O与⊙A的位置关系.
    解:∵点A的坐标为(4,3),
    ∴OA==5,
    ∵半径为5,中考
    ∴OA=r,
    ∴点O在⊙A上.中考
    故在⊙A上.中考
    【点评】本题考查了点与圆的位置关系:点与圆的位置关系有3种.设⊙O的半径为r,点P到圆心的距离OP=d,当点P在圆外⇔d>r;当点P在圆上⇔d=r;当点P在圆内⇔d<r.中考
    14.(4分)(2021秋•济阳区期末)如果A(0,3),B(m,3)是抛物线y=a(x﹣2)2上两个不同的点,那么m的值为   4 .中考
    【考点】二次函数图象上点的坐标特征.中考
    【专题】二次函数图象及其性质;运算能力;推理能力.
    【分析】根据函数值相等两点关于对称轴对称,可得答案.
    解:由点A(0,3)、B(m,3)是抛物线y=a(x﹣2)2上两个不同的点,得
    A(0,3)与B(m,3)关于对称轴x=2对称,
    m﹣2=2﹣0,中考
    解得m=4,
    故4.中考
    【点评】本题考查了二次函数图象上点的坐标特征,利用函数值相等两点关于对称轴对称得出m﹣2=2﹣0是解题关键.
    15.(4分)(2022春•杨浦区校级期中)▱ABCD的周长为64cm,BC上高AE=6cm,CD上高AF=10cm,则△BCD的面积为  60 .
    【考点】平行四边形的性质;三角形的面积.
    【专题】多边形与平行四边形;推理能力.
    【分析】设BC=a,CD=b,列出方程组即可解决问题.
    解:设BC=a,CD=b,中考
    由题意:,中考
    解得,中考
    故S△BCD=6×20=60.中考
    故60.

    【点评】本题考查平行四边形的性质,平行四边形的面积等知识,解题的关键是列出方程组解决问题,学会转化的思想,属于中考常考题型.
    16.(4分)(2021秋•兴化市期末)如图,已知二次函数y1=ax2+bx+c(a≠0)与一次函数y2=kx+m(k≠0)的图象相交于点A(﹣2,4)和B(8,2),若无论x取何值,S总取y1,y2中的最大值,则S的最小值是  2 .

    【考点】二次函数的性质;二次函数图象上点的坐标特征;二次函数的最值;一次函数的性质;一次函数图象上点的坐标特征.
    【专题】二次函数图象及其性质;推理能力.
    【分析】根据图象可得x≤﹣2,﹣2<x<8,x≥8时S的取值范围,进而求解.
    解:当x≤﹣2时,S=ax2+bx+c,S最小值为4,中考
    当﹣2<x<8时,S=kx+m,2<S<4,
    当x≥8时,S=ax2+bx+c,S最小值为2,
    ∴S的最小值为2,
    故2.
    【点评】本题考查二次函数的性质,解题关键是根据图象求出S在不同x的取值范围时的取值范围.中考
    17.(4分)(2021秋•武侯区期末)如图,正方形ABCD的对角线相交于点O,正方形A'B'C'O与正方形ABCD的边长相等,若两个正方形的重叠部分(阴影部分)的面积为,则正方形A'B'C'O的面积为  4 .

    【考点】正方形的性质;全等三角形的判定与性质.
    【专题】矩形 菱形 正方形;推理能力.
    【分析】根据正方形的性质得出OB=OC,∠OBA=∠OCB=45°,∠BOC=∠A'OC'=90°,推出∠A'OB=∠COC',证出△OBM≌△OCN可得答案.
    解:∵四边形ABCD和四边形OA'B'C'都是正方形,
    ∴OB=OC,∠OBA=∠OCB=45°,∠BOC=∠A'OC'=90°,中考
    ∴∠A'OB=∠COC'.中考
    在△OBM与△OCN中,中考

    ∴△OBM≌△OCN(ASA),
    ∴四边形OMBN的面积等于三角形BOC的面积,
    即重叠阴影部分面积不变,总是等于正方形ABCD和正方形A'B'C'O面积的,中考
    ∴正方形A'B'C'O的面积为4.中考
    故4.中考
    .中考
    【点评】本题主要考查了正方形的性质、全等三角形的判定和性质,解决不规则图形的面积,要通过分割图形,利用全等知识转化三角形,使不规则图形转化为规则图形进行求解.
    18.(4分)(2021秋•黄浦区期末)如图,在△ABC中,AB=4,AC=5,将△ABC绕点A旋转,使点B落在AC边上的点D处,点C落在点E处,如果点E恰好在线段BD的延长线上,那么边BC的长等于   .中考
    中考
    【考点】旋转的性质.
    【专题】图形的全等;平移、旋转与对称;图形的相似;推理能力.中考
    【分析】根据旋转的性质得到AD=AB=4,AE=AC=5,∠BAC=∠DAE,根据全等三角形的性质得到∠C=∠E,DE=BC,根据相似三角形的性质即可得到结论.
    解:∵将△ABC绕点A旋转,使点B落在AC边上的点D处,点C落在点E处,AB=4,AC=5,中考
    ∴AD=AB=4,AE=AC=5,∠BAC=∠DAE,
    ∴△BAC≌△DAE(SAS),中考
    ∴∠C=∠E,DE=BC,
    ∵∠BDC=∠ADE,
    ∴△ADE∽△BDC,中考
    ∴,
    ∴,
    ∴BC=,
    故.

    【点评】本题考查了旋转的性质,全等三角形的判定和性质,相似三角形的判定和性质,熟练掌握旋转的性质定理是解题的关键.
    三.解答题(共7小题,满分78分)
    19.(10分)(2021秋•长宁区期末)计算:cot30°﹣.中考
    【考点】特殊角的三角函数值.
    【专题】实数;运算能力.中考
    【分析】把特殊角的三角函数值代入计算即可.
    解:cot30°﹣
    =﹣
    =﹣()
    =1.
    【点评】本题考查了特殊角的三角函数值,熟练掌握特殊角的三角函数值是解题的关键.中考
    20.(10分)(2022•黄岛区一模)跳台滑雪是以滑雪板为工具,在专设的跳台上以自身的体重通过助滑坡获得的速度比跳跃距离和动作姿势的一种雪上竞技项目.如图是某跳台滑雪训练场的横截面示意图,取某一位置的水平线为x轴,过跳台终点A作水平线的垂线为y轴,建立平面直角坐标系.图中的抛物线近似表示滑雪场地上的一座小山坡,某运动员从点O正上方3米的A点滑出,滑出后沿一段抛物线运动,当运动员运动到例A处的水平距离为4米时,例水平线的高度为7米.
    (1)求抛物线C2的函数解析式;
    (2)当运动员与点A的水平距离是多少米时,运动员和小山坡到水平线的高度相同;中考
    (3)运动员从A点滑出后直至和小山坡到水平线的高度相同时,运动员与小山坡的高度差最大是多少米?中考

    【考点】二次函数的应用.
    【专题】二次函数的应用;应用意识.中考
    【分析】(1)根据题意将点(0,4)和(4,8)代入C2:y=﹣x2+bx+c求出b、c的值即可写出C2的函数解析式;
    (2)令﹣x2+x+1=﹣x2+x+4,解方程即可;
    (3)设运动员与小山坡的高度差为h,根据题意得h=﹣x2+x+4﹣(﹣x2+x+1)=﹣x2+x+3=﹣(x﹣4)2+,由函数的性质可以求出h的最大值.
    解:(1)由题意可知抛物线C2:y=﹣x2+bx+c过点(0,4)和(4,8),将其代入得:

    解得:,中考
    ∴抛物线C2的函数解析式为:y=﹣x2+x+4;
    (2)当运动员和小山坡到水平线的高度相同时,
    ﹣x2+x+1=﹣x2+x+4,
    整理得:x2﹣8x﹣72=0,中考
    解得:x1=4+2,x2=4﹣2(舍去),
    ∴当运动员与点A的水平距离是4+2时,运动员和小山坡到水平线的高度相同;中考
    (3)设运动员与小山坡的高度差为h,
    则h=﹣x2+x+4﹣(﹣x2+x+1)=﹣x2+x+3=﹣(x﹣4)2+,
    ∵﹣<0,中考
    ∴当x=4时,h有最大值,最大值为,
    ∴运动员与小山坡的高度差最大是米.
    【点评】本题考查二次函数的基本性质及其应用,熟练掌握二次函数的基本性质,并能将实际问题与二次函数模型相结合是解决本题的关键.
    21.(10分)(2021秋•开福区校级期末)如图,在四边形ABCD中,BD所在的直线垂直平分线段AC,过点A作AF∥BC交CD于F,延长AB、DC交于点E.
    (1)求证:AC平分∠EAF;
    (2)求证:∠FAD=∠E;
    (3)若∠EAD=90°,AE=5,AF=3,求CF的长.
    中考
    【考点】等腰三角形的判定与性质;平行线的性质;线段垂直平分线的性质.
    【专题】等腰三角形与直角三角形;推理能力.
    【分析】(1)根据线段垂直平分线的性质得到BA=BC,根据等腰三角形的性质得到∠BAC=∠BCA,根据平行线的性质得到∠CAF=∠BCA,等量代换证明结论;
    (2)根据线段垂直平分线的性质得到DA=DC,根据等腰三角形的性质得到∠DAC=∠DCA,再根据三角形的外角性质证明即可;中考
    (3)根据三角形的内角和定理得到∠E+∠ADE=90°,由(2)知,∠FAD=∠E,求得∠AFD=∠AFE=90°,根据勾股定理得到EF==4,设DF=x,求得DF=,得到AD==,根据线段垂直平分线的性质得到AD=CD=,于是得到结论.
    (1)证明:∵BD所在的直线垂直平分线段AC,中考
    ∴BA=BC,
    ∴∠BAC=∠BCA,中考
    ∵BC∥AF,
    ∴∠CAF=∠BCA,中考
    ∴∠CAF=∠BAC,
    即AC平分∠EAF;
    (2)证明:∵BD所在的直线垂直平分线段AC,
    ∴DA=DC,
    ∴∠DAC=∠DCA,中考
    ∵∠DCA是△ACE的一个外角,
    ∴∠DCA=∠E+∠EAC,
    ∴∠E+∠EAC=∠FAD+∠CAF,
    ∵∠CAF=∠EAC,中考
    ∴∠FAD=∠E;中考
    (3)解:∵∠EAD=90°,
    ∴∠E+∠ADE=90°,中考
    由(2)知,∠FAD=∠E,
    ∴∠DAF+∠ADE=90°,
    ∴∠AFD=∠AFE=90°,
    ∵AE=5,AF=3,中考
    ∴EF==4,中考
    设DF=x,
    ∵DE2﹣AE2=AD2=AF2+DF2,
    ∴(4+x)2﹣52=32+x2,
    解得x=,
    ∴DF=,中考
    ∴DE=,
    ∴AD==,
    ∵BD所在的直线垂直平分线段AC,中考
    ∴AD=CD=,
    ∴CF=﹣=.中考
    中考
    【点评】本题考查的是线段的垂直平分线的性质、三角形的外角性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.中考
    22.(10分)(2021•溧阳市一模)“只要人人献出一点爱,世界将变成美好的人间”.某单位利用“世界献血日”开展自愿义务献血活动,经过检测,献血者血型有“A、B、AB、O”四种类型,随机抽取部分献血结果进行统计,根据结果制作了如图两幅不完整统计图表(表、图).
    血型统计表:中考
    血型
    A中考
    B
    AB中考
    O中考
    人数中考
     12 中考
    10
    5
     23 
    血型统计图:
    (1)本次随机抽取献血者人数为 50 人,图中m= 20 ;
    (2)补全表中的数据;
    (3)若这次活动中该单位有1300人义务献血,估计大约有多少人是A型血?

    【考点】用样本估计总体;统计表.
    【专题】统计的应用;数据分析观念.
    【分析】(1)用AB型的人数除以它所占的百分比得到随机抽取的献血者的总人数,然后计算m的值;
    (2)先计算出O型的人数,再计算出A型人数,从而可补全上表中的数据;
    (3)用总人数乘以样本中A型血人数所占比例.中考
    解:(1)这次随机抽取的献血者人数为5÷10%=50(人),
    所以m=×100=20;
    故答案为50,20;中考

    (2)O型献血的人数为46%×50=23(人),
    A型献血的人数为50﹣10﹣5﹣23=12(人),中考
    血型
    A中考
    B中考
    AB
    O
    人数
    12
    10
    5
    23
    故答案为12,23;

    (3)1300××100%=312(人),中考
    答:估计有312人是A型血.中考
    【点评】本题考查了用样本估计总体、统计表、扇形统计图,解决本题的关键是综合运用以上知识.中考
    23.(12分)(2022春•汉阳区校级月考)如图,AB是⊙O的直径,点C,D为⊙O上两点,CE是⊙O的切线,CE⊥BD于点E,连接BC交AD于点F.中考
    (1)求证:点C是的中点;
    (2)若,求tan∠BAD的值.
    中考
    【考点】相似三角形的判定与性质;解直角三角形;圆周角定理;切线的性质.中考
    【专题】与圆有关的位置关系;图形的相似;解直角三角形及其应用;推理能力.中考
    【分析】(1)由平行线的性质可证CO⊥AD,即可得解;
    (2)连接CD、AC、OC,OC与AD交于点G,由相似三角形的性质得,设AC=CD=2x,GF=y,再证明△ACG∽△AFC,列出x、y的方程,用x表示y,再设⊙O为r,由勾股定理得出r与x的关系式,进而由三角函数定义求得结果.中考
    (1)证明:连接OC,交AD于点P,中考

    ∵CE为切线,
    ∴OC⊥CE,
    又∵CE⊥BD,
    ∴CO∥BE,中考
    ∵AB为直径,
    ∴∠ADB=90°,
    ∴BE⊥AD,
    ∴CO⊥AD,
    又∵CO是半径,中考
    ∴=,
    ∴点C是的中点;
    (2)解:连接CD、AC、OC,OC与AD交于点G,如下图,中考

    ∵=,
    ∴AC=CD,OC⊥AD,AG=DG,
    ∵∠BCD=∠BAD,∠CFD=∠AFB,
    ∴△CDF∽△ABF,中考
    ∴,中考
    ∴,
    设AC=CD=2x,GF=y,则DF=3x,
    ∴AG=DG=3x+y,AF=3x+2y,中考
    ∵AB是直径,
    ∴∠ACF=90°=∠AGF,
    ∵∠CAG=∠FAC,
    ∴△ACG∽△AFC,
    ∴,即AC2=AG•AF,
    ∴,
    ∴y=x,或y=﹣x(舍),中考
    ∴AG=3x+y=4x,
    ∴CG=,中考
    设OA=OC=r,则OG=r﹣2x,中考
    ∵OA2﹣OG2=AG2,
    ∴r2﹣(r﹣2x)2=(4x)2,中考
    ∴r=5x,中考
    ∴OG=r﹣2x=3x,
    ∴tan∠BAD=.中考
    【点评】本题主要考查了圆的切线性质,圆周角定理,垂径定理,相似三角形的性质与判定,解直角三角形,勾股定理的应用,关键在于作辅助线.
    24.(12分)(2021秋•重庆期末)如图,在平面直角坐标系中,抛物线y=x2+bx+c与直线AB交于A,B两点,其中A(0,1),B(4,﹣1).
    (1)求该抛物线的函数表达式;
    (2)点P,Q为直线AB下方抛物线上任意两点,且满足点P的横坐标为m,点Q的横坐标为m+1,过点P和点Q分别作y轴的平行线交直线AB于C点和D点,连接PQ,求四边形PQDC面积的最大值;
    (3)在(2)的条件下,将抛物线y=x2+bx+c沿射线AB平移2个单位,得到新的抛物线y1,点E为点P的对应点,点F为y1的对称轴上任意一点,点G为平面直角坐标系内一点,当点B,E,F,G构成以EF为边的菱形时,直接写出所有符合条件的点G的坐标,并任选其中一个点的坐标,写出求解过程.

    【考点】二次函数综合题.
    【专题】数形结合;分类讨论;待定系数法;函数的综合应用;矩形 菱形 正方形;几何直观;应用意识.
    【分析】(1)用待定系数法直接可得抛物线的函数表达式;中考
    (2)用待定系数法求出直线AB为y=﹣x+1,即可得P(m,m2﹣m+1),Q(m+1,(m+1)2﹣(m+1)+1),C(m,﹣m+1),D(m+1,﹣(m+1)+1),从而得PC=﹣m2+4m,QD=﹣m2+2m+3,即可求出四边形PQDC面积为PC•|xQ﹣xP|+QD•|xQ﹣xP|=﹣m2+3m+,根据二次函数性质即得答案.
    (3)由(2)知P(,﹣),根据直线AB为y=﹣x+1与x轴交点为(2,0),与y轴交点为(0,1),两交点之间距离是,可知沿射线AB平移2个单位,实际可看成向右平移4个单位,再向下平移2个单位,即得E(,﹣),抛物线y=x2﹣x+1平移后y1=x2﹣x+33,抛物线y1的对称轴为:直线x=,当BE=EF时,设F(,t),可得(﹣4)2+(﹣+1)2=(﹣)2+(t+)2,即可解得F或,由平移性质可得G或G,当BF=EF时,同理可得G(,﹣).中考
    解:(1)把A(0,1),B(4,﹣1)代入抛物线y=x2+bx+c得:
    ,解得,中考
    ∴抛物线的函数表达式为y=x2﹣x+1;
    (2)设直线AB为y=kx+n,将A(0,1),B(4,﹣1)代入得:中考
    ,解得,
    ∴直线AB为y=﹣x+1,
    ∵点P的横坐标为m,点Q的横坐标为m+1,中考
    ∴P(m,m2﹣m+1),Q(m+1,(m+1)2﹣(m+1)+1),C(m,﹣m+1),D(m+1,﹣(m+1)+1),
    ∴PC=﹣m+1﹣(m2﹣m+1)=﹣m2+4m,QD=﹣(m+1)+1﹣[(m+1)2﹣(m+1)+1]=﹣m2+2m+3,
    ∴四边形PQDC面积为PC•|xQ﹣xP|+QD•|xQ﹣xP|
    =(﹣m2+4m)•(m+1﹣m)+(﹣m2+2m+3)•(m+1﹣m)
    =﹣m2+3m+
    =﹣(m﹣)2+,中考
    ∵﹣1<0,中考
    ∴m=时,四边形PQDC面积的最大值为;中考
    (3)由(2)知P(,﹣),中考
    ∵直线AB为y=﹣x+1与x轴交点为(2,0),与y轴交点为(0,1),两交点之间距离是,
    ∴沿射线AB平移2个单位,实际可看成向右平移4个单位,再向下平移2个单位,
    ∴E(,﹣),
    抛物线y=x2﹣x+1平移后y1=x2﹣x+33,
    ∴抛物线y1的对称轴为:直线x=,
    当BE=EF时,如图:

    设F(,t),
    ∵四边形BEFG为菱形,
    ∴BE=EF,
    ∴(﹣4)2+(﹣+1)2=(﹣)2+(t+)2,
    解得t=或t=,
    ∴F或,
    当F时,E(,﹣)平移到B(4,﹣1),F即平移到G,中考
    ∴G,中考
    当F时,E(,﹣)平移到B(4,﹣1),F即平移到G,
    ∴G,
    当BF=EF时,如图:

    同理可得G(,﹣),
    综上所述,G坐标为或或(,﹣).中考
    【点评】本题考查二次函数综合应用,涉及待定系数法,四边形面积、菱形的性质及应用等知识,解题的关键是用含字母的代数式表示相关点坐标和相关线段的长度.
    25.(14分)(2022春•朝阳区校级月考)【模型构建】如图1,在四边形ABCD中,∠ABC+∠ADC=180°,AB=AD,∠ACD=45°,AC=3.求四边形ABCD的面积.琪琪同学的做法是:延长CD至E点,使DE=BC,连结AE.易证△ABC≌△ADE.进而把四边形ABCD的面积转化为△ACE的面积,则四边形ABCD的面积为  9 .
    【应用】如图2,⊙O为△ABC的外接圆,AB是直径,AC=BC,点D是直径AB左侧的圆上一点,连接DA,DB,DC.若CD=4,求四边形ADBC的面积;
    【灵活运用】如图3,在四边形ADBC中,连结AB、CD,∠CAB=∠ACB=∠BDC=60°,四边形ADBC的面积为,则线段CD= 4 .中考

    中考
    【考点】圆的综合题.
    【专题】代数几何综合题;推理能力.
    【分析】【模型构建】延长CD至E点,使DE=BC,连结AE.易证△ABC≌△ADE.进而把四边形ABCD的面积转化为△ACE的面积;
    【应用】同【模型构建】的方法,即可解答;
    【灵活运用】同【模型构建】的方法,即可解答.
    解:【模型构建】如题干图1,延长CD至E点,使DE=BC,连结AE,中考
    ∴∠ADE+∠ADC=180°,
    ∵∠ABC+∠ADE=180°,中考
    ∴∠ABC=∠ADE,
    ∵AB=AD,
    ∴△ABC≌△ADE(SAS),
    ∴S△ABC=S△ADE,AC=AE,
    ∴∠E=∠ACD=45°,
    ∴∠CAE=90°,
    ∴△CAE是等腰直角三角形,中考
    ∴S四边形ABCD=S△ABC+S△ACD=S△ADE+S△ADE=S△ACE=AC•AE=AC2=×(3)2=9,中考
    故9;

    【应用】如图2,
    延长DA至F点,使AF=BD,连结CF,
    同【模型构建】得,△ACF≌△BCD(SAS),中考
    ∴CD=CF,∠ACF=∠BCD,中考
    ∵AB是⊙O的直径,
    ∴∠ACB=90°,
    ∴∠DCF=∠ACD+∠ACF=∠ACD+∠BCD=∠ACB=90°,
    ∴△DCF是等腰直角三角形,
    ∴S四边形ADBC=S△DCF=CD2=×42=8;
    中考
    【灵活运用】如图3,
    延长DA至H点,使AH=BD,连结CH,中考
    ∵∠CAB=∠ACB=60°,
    ∴△ABC是等边三角形,中考
    ∴BC=AC,∠ACB=60°,
    ∵∠CAB=∠BDC=60°,
    ∴点A,D,B,C四点共圆,
    ∴∠DBC+∠CAD=180°,
    同【模型构建】得,△ACH≌△BCD(SAS),
    ∴CD=CH,∠BCD=∠ACH,
    ∴∠DCH=∠ACD+∠ACH=∠ACD+∠BCD=∠ACB=60°,
    ∴△DCH是等边三角形,
    ∵四边形ADBC的面积为,
    ∴S四边形ADBC=S△DCH=CD2=4,
    ∴CD=4,
    故4.


    【点评】此题是圆的综合题,主要考查了全等三角形的判定和性质,四点共圆的判定,等边三角形的面积公式,等腰直角三角形的判定,作出辅助线构造出全等三角形是解本题的关键.中考
    中考
    考点卡片中考
    1.坐标与图形性质
    1、点到坐标轴的距离与这个点的坐标是有区别的,表现在两个方面:①到x轴的距离与纵坐标有关,到y轴的距离与横坐标有关;②距离都是非负数,而坐标可以是负数,在由距离求坐标时,需要加上恰当的符号.
    2、有图形中一些点的坐标求面积时,过已知点向坐标轴作垂线,然后求出相关的线段长,是解决这类问题的基本方法和规律.
    3、若坐标系内的四边形是非规则四边形,通常用平行于坐标轴的辅助线用“割、补”法去解决问题.中考
    2.一次函数的性质中考
    一次函数的性质:
    k>0,y随x的增大而增大,函数从左到右上升;k<0,y随x的增大而减小,函数从左到右下降.
    由于y=kx+b与y轴交于(0,b),当b>0时,(0,b)在y轴的正半轴上,直线与y轴交于正半轴;当b<0时,(0,b)在y轴的负半轴,直线与y轴交于负半轴.
    3.一次函数图象上点的坐标特征
    一次函数y=kx+b,(k≠0,且k,b为常数)的图象是一条直线.它与x轴的交点坐标是(﹣,0);与y轴的交点坐标是(0,b).中考
    直线上任意一点的坐标都满足函数关系式y=kx+b.
    4.二次函数的性质
    二次函数y=ax2+bx+c(a≠0)的顶点坐标是(﹣,),对称轴直线x=﹣,二次函数y=ax2+bx+c(a≠0)的图象具有如下性质:
    ①当a>0时,抛物线y=ax2+bx+c(a≠0)的开口向上,x<﹣时,y随x的增大而减小;x>﹣时,y随x的增大而增大;x=﹣时,y取得最小值,即顶点是抛物线的最低点.中考
    ②当a<0时,抛物线y=ax2+bx+c(a≠0)的开口向下,x<﹣时,y随x的增大而增大;x>﹣时,y随x的增大而减小;x=﹣时,y取得最大值,即顶点是抛物线的最高点.
    ③抛物线y=ax2+bx+c(a≠0)的图象可由抛物线y=ax2的图象向右或向左平移|﹣|个单位,再向上或向下平移||个单位得到的.
    5.二次函数图象上点的坐标特征
    二次函数y=ax2+bx+c(a≠0)的图象是抛物线,顶点坐标是(﹣,).
    ①抛物线是关于对称轴x=﹣成轴对称,所以抛物线上的点关于对称轴对称,且都满足函数函数关系式.顶点是抛物线的最高点或最低点.中考
    ②抛物线与y轴交点的纵坐标是函数解析中的c值.
    ③抛物线与x轴的两个交点关于对称轴对称,设两个交点分别是(x1,0),(x2,0),则其对称轴为x=.
    6.二次函数的最值
    (1)当a>0时,抛物线在对称轴左侧,y随x的增大而减少;在对称轴右侧,y随x的增大而增大,因为图象有最低点,所以函数有最小值,当x=时,y=.中考
    (2)当a<0时,抛物线在对称轴左侧,y随x的增大而增大;在对称轴右侧,y随x的增大而减少,因为图象有最高点,所以函数有最大值,当x=时,y=.
    (3)确定一个二次函数的最值,首先看自变量的取值范围,当自变量取全体实数时,其最值为抛物线顶点坐标的纵坐标;当自变量取某个范围时,要分别求出顶点和函数端点处的函数值,比较这些函数值,从而获得最值.
    7.抛物线与x轴的交点
    求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标,令y=0,即ax2+bx+c=0,解关于x的一元二次方程即可求得交点横坐标.中考
    (1)二次函数y=ax2+bx+c(a,b,c是常数,a≠0)的交点与一元二次方程ax2+bx+c=0根之间的关系.
    △=b2﹣4ac决定抛物线与x轴的交点个数.
    △=b2﹣4ac>0时,抛物线与x轴有2个交点;
    △=b2﹣4ac=0时,抛物线与x轴有1个交点;
    △=b2﹣4ac<0时,抛物线与x轴没有交点.
    (2)二次函数的交点式:y=a(x﹣x1)(x﹣x2)(a,b,c是常数,a≠0),可直接得到抛物线与x轴的交点坐标(x1,0),(x2,0).
    8.二次函数的应用
    (1)利用二次函数解决利润问题中考
    在商品经营活动中,经常会遇到求最大利润,最大销量等问题.解此类题的关键是通过题意,确定出二次函数的解析式,然后确定其最大值,实际问题中自变量x的取值要使实际问题有意义,因此在求二次函数的最值时,一定要注意自变量x的取值范围.
    (2)几何图形中的最值问题中考
    几何图形中的二次函数问题常见的有:几何图形中面积的最值,用料的最佳以及动态几何中的最值的讨论.中考
    (3)构建二次函数模型解决实际问题中考
    利用二次函数解决抛物线形的隧道、大桥和拱门等实际问题时,要恰当地把这些实际问题中的数据落实到平面直角坐标系中的抛物线上,从而确定抛物线的解析式,通过解析式可解决一些测量问题或其他问题.
    9.二次函数综合题
    (1)二次函数图象与其他函数图象相结合问题
    解决此类问题时,先根据给定的函数或函数图象判断出系数的符号,然后判断新的函数关系式中系数的符号,再根据系数与图象的位置关系判断出图象特征,则符合所有特征的图象即为正确选项.
    (2)二次函数与方程、几何知识的综合应用中考
    将函数知识与方程、几何知识有机地结合在一起.这类试题一般难度较大.解这类问题关键是善于将函数问题转化为方程问题,善于利用几何图形的有关性质、定理和二次函数的知识,并注意挖掘题目中的一些隐含条件.中考
    (3)二次函数在实际生活中的应用题
    从实际问题中分析变量之间的关系,建立二次函数模型.关键在于观察、分析、创建,建立直角坐标系下的二次函数图象,然后数形结合解决问题,需要我们注意的是自变量及函数的取值范围要使实际问题有意义.
    10.平行线的性质
    1、平行线性质定理中考
    定理1:两条平行线被第三条直线所截,同位角相等. 简单说成:两直线平行,同位角相等.中考
    定理2:两条平行线被地三条直线所截,同旁内角互补..简单说成:两直线平行,同旁内角互补. 中考
    定理3:两条平行线被第三条直线所截,内错角相等. 简单说成:两直线平行,内错角相等.
    2、两条平行线之间的距离处处相等.
    11.三角形的面积
    (1)三角形的面积等于底边长与高线乘积的一半,即S△=×底×高.中考
    (2)三角形的中线将三角形分成面积相等的两部分.
    12.三角形的重心中考
    (1)三角形的重心是三角形三边中线的交点.
    (2)重心的性质:中考
    ①重心到顶点的距离与重心到对边中点的距离之比为2:1.
    ②重心和三角形3个顶点组成的3个三角形面积相等.
    ③重心到三角形3个顶点距离的和最小.(等边三角形)中考
    13.全等三角形的判定与性质中考
    (1)全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.中考
    (2)在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形.中考
    14.线段垂直平分线的性质中考
    (1)定义:经过某一条线段的中点,并且垂直于这条线段的直线,叫做这条线段的垂直平分线(中垂线)垂直平分线,简称“中垂线”.
    (2)性质:①垂直平分线垂直且平分其所在线段.    ②垂直平分线上任意一点,到线段两端点的距离相等.    ③三角形三条边的垂直平分线相交于一点,该点叫外心,并且这一点到三个顶点的距离相等.
    15.等腰三角形的判定与性质中考
    1、等腰三角形提供了好多相等的线段和相等的角,判定三角形是等腰三角形是证明线段相等、角相等的重要手段.
    2、在等腰三角形有关问题中,会遇到一些添加辅助线的问题,其顶角平分线、底边上的高、底边上的中线是常见的辅助线,虽然“三线合一”,但添加辅助线时,有时作哪条线都可以,有时不同的做法引起解决问题的复杂程度不同,需要具体问题具体分析.
    3、等腰三角形性质问题都可以利用三角形全等来解决,但要注意纠正不顾条件,一概依赖全等三角形的思维定势,凡可以直接利用等腰三角形的问题,应当优先选择简便方法来解决.
    16.勾股定理
    (1)勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.
    如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.
    (2)勾股定理应用的前提条件是在直角三角形中.中考
    (3)勾股定理公式a2+b2=c2 的变形有:a=,b=及c=.中考
    (4)由于a2+b2=c2>a2,所以c>a,同理c>b,即直角三角形的斜边大于该直角三角形中的每一条直角边.中考
    17.平行四边形的性质
    (1)平行四边形的概念:有两组对边分别平行的四边形叫做平行四边形.
    (2)平行四边形的性质:
    ①边:平行四边形的对边相等.
    ②角:平行四边形的对角相等.
    ③对角线:平行四边形的对角线互相平分.
    (3)平行线间的距离处处相等.
    (4)平行四边形的面积:
    ①平行四边形的面积等于它的底和这个底上的高的积.
    ②同底(等底)同高(等高)的平行四边形面积相等.
    18.正方形的性质
    (1)正方形的定义:有一组邻边相等并且有一个角是直角的平行四边形叫做正方形.
    (2)正方形的性质中考
    ①正方形的四条边都相等,四个角都是直角;中考
    ②正方形的两条对角线相等,互相垂直平分,并且每条对角线平分一组对角;中考
    ③正方形具有四边形、平行四边形、矩形、菱形的一切性质.中考
    ④两条对角线将正方形分成四个全等的等腰直角三角形,同时,正方形又是轴对称图形,有四条对称轴.中考
    19.*平面向量中考
    平面向量.
    20.圆周角定理中考
    (1)圆周角的定义:顶点在圆上,并且两边都与圆相交的角叫做圆周角.中考
    注意:圆周角必须满足两个条件:①顶点在圆上.②角的两条边都与圆相交,二者缺一不可.
    (2)圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.
    推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.
    (3)在解圆的有关问题时,常常需要添加辅助线,构成直径所对的圆周角,这种基本技能技巧一定要掌握.
    (4)注意:①圆周角和圆心角的转化可通过作圆的半径构造等腰三角形.利用等腰三角形的顶点和底角的关系进行转化.②圆周角和圆周角的转化可利用其“桥梁”﹣﹣﹣圆心角转化.③定理成立的条件是“同一条弧所对的”两种角,在运用定理时不要忽略了这个条件,把不同弧所对的圆周角与圆心角错当成同一条弧所对的圆周角和圆心角.
    21.点与圆的位置关系
    (1)点与圆的位置关系有3种.设⊙O的半径为r,点P到圆心的距离OP=d,则有:中考
    ①点P在圆外⇔d>r
    ②点P在圆上⇔d=r中考
    ①点P在圆内⇔d<r中考
    (2)点的位置可以确定该点到圆心距离与半径的关系,反过来已知点到圆心距离与半径的关系可以确定该点与圆的位置关系.
    (3)符号“⇔”读作“等价于”,它表示从符号“⇔”的左端可以得到右端,从右端也可以得到左端.
    22.切线的性质
    (1)切线的性质中考
    ①圆的切线垂直于经过切点的半径.
    ②经过圆心且垂直于切线的直线必经过切点.中考
    ③经过切点且垂直于切线的直线必经过圆心.中考
    (2)切线的性质可总结如下:
    如果一条直线符合下列三个条件中的任意两个,那么它一定满足第三个条件,这三个条件是:①直线过圆心;②直线过切点;③直线与圆的切线垂直.
    (3)切线性质的运用中考
    由定理可知,若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.简记作:见切点,连半径,见垂直.
    23.正多边形和圆
    (1)正多边形与圆的关系
    把一个圆分成n(n是大于2的自然数)等份,依次连接各分点所得的多边形是这个圆的内接正多边形,这个圆叫做这个正多边形的外接圆.
    (2)正多边形的有关概念
    ①中心:正多边形的外接圆的圆心叫做正多边形的中心.
    ②正多边形的半径:外接圆的半径叫做正多边形的半径.
    ③中心角:正多边形每一边所对的圆心角叫做正多边形的中心角.中考
    ④边心距:中心到正多边形的一边的距离叫做正多边形的边心距.中考
    24.圆的综合题
    圆的综合题.
    25.旋转的性质中考
    (1)旋转的性质:
        ①对应点到旋转中心的距离相等.    ②对应点与旋转中心所连线段的夹角等于旋转角.    ③旋转前、后的图形全等.  (2)旋转三要素:①旋转中心; ②旋转方向; ③旋转角度.    注意:三要素中只要任意改变一个,图形就会不一样.
    26.比例线段
    (1)对于四条线段a、b、c、d,如果其中两条线段的比(即它们的长度比)与另两条线段的比相等,如 ab=cd(即ad=bc),我们就说这四条线段是成比例线段,简称比例线段.
    (2)判定四条线段是否成比例,只要把四条线段按大小顺序排列好,判断前两条线段之比与后两条线段之比是否相等即可,求线段之比时,要先统一线段的长度单位,最后的结果与所选取的单位无关系.
    27.黄金分割
    (1)黄金分割的定义:中考
    如图所示,把线段AB分成两条线段AC和BC(AC>BC),且使AC是AB和BC的比例中项(即AB:AC=AC:BC),叫做把线段AB黄金分割,点C叫做线段AB的黄金分割点.中考
    其中AC=AB≈0.618AB,并且线段AB的黄金分割点有两个.中考
    (2)黄金三角形:黄金三角形是一个等腰三角形,其腰与底的长度比为黄金比值.中考
    黄金三角形分两种:①等腰三角形,两个底角为72°,顶角为36°.这样的三角形的底与一腰之长之比为黄金比:;②等腰三角形,两个底角为36°,顶角为108°;这种三角形一腰与底边之长之比为黄金比:.
    (3)黄金矩形:黄金矩形的宽与长之比确切值为.中考
    28.相似三角形的判定与性质
    (1)相似三角形相似多边形的特殊情形,它沿袭相似多边形的定义,从对应边的比相等和对应角相等两方面下定义;反过来,两个三角形相似也有对应角相等,对应边的比相等.
    (2)三角形相似的判定一直是中考考查的之一,在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形;或依据基本图形对图形进行分解、组合;或作辅助线构造相似三角形,判定三角形相似的方法有事可单独使用,有时需要综合运用,无论是单独使用还是综合运用,都要具备应有的条件方可.中考
    29.特殊角的三角函数值
    (1)特指30°、45°、60°角的各种三角函数值.
    sin30°=; cos30°=;tan30°=;
    sin45°=;cos45°=;tan45°=1;中考
    sin60°=;cos60°=; tan60°=;
    (2)应用中要熟记特殊角的三角函数值,一是按值的变化规律去记,正弦逐渐增大,余弦逐渐减小,正切逐渐增大;二是按特殊直角三角形中各边特殊值规律去记.
    (3)特殊角的三角函数值应用广泛,一是它可以当作数进行运算,二是具有三角函数的特点,在解直角三角形中应用较多.中考
    30.解直角三角形中考
    (1)解直角三角形的定义
    在直角三角形中,由已知元素求未知元素的过程就是解直角三角形.
    (2)解直角三角形要用到的关系
    ①锐角、直角之间的关系:∠A+∠B=90°;中考
    ②三边之间的关系:a2+b2=c2;
    ③边角之间的关系:中考
    sinA==,cosA==,tanA==.中考
    (a,b,c分别是∠A、∠B、∠C的对边)
    31.解直角三角形的应用-坡度坡角问题
    (1)坡度是坡面的铅直高度h和水平宽度l的比,又叫做坡比,它是一个比值,反映了斜坡的陡峭程度,一般用i表示,常写成i=1:m的形式.
    (2)把坡面与水平面的夹角α叫做坡角,坡度i与坡角α之间的关系为:i=h/l=tanα.
    (3)在解决坡度的有关问题中,一般通过作高构成直角三角形,坡角即是一锐角,坡度实际就是一锐角的正切值,水平宽度或铅直高度都是直角边,实质也是解直角三角形问题.中考
    应用领域:①测量领域;②航空领域 ③航海领域:④工程领域等.
    32.用样本估计总体
    用样本估计总体是统计的基本思想.
    1、用样本的频率分布估计总体分布:中考
    从一个总体得到一个包含大量数据的样本,我们很难从一个个数字中直接看出样本所包含的信息.这时,我们用频率分布直方图来表示相应样本的频率分布,从而去估计总体的分布情况. 中考
    2、用样本的数字特征估计总体的数字特征(主要数据有众数、中位数、平均数、标准差与方差 ).
    一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.
    33.统计表
    统计表可以将大量数据的分类结果清晰,一目了然地表达出来.
    统计调查所得的原始资料,经过整理,得到说明社会现象及其发展过程的数据,把这些数据按一定的顺序排列在表格中,就形成“统计表”.统计表是表现数字资料整理结果的最常用的一种表格. 统计表是由纵横交叉线条所绘制的表格来表现统计资料的一种形式.中考
    34.算术平均数
    (1)平均数是指在一组数据中所有数据之和再除以数据的个数.它是反映数据集中趋势的一项指标.
    (2)算术平均数:对于n个数x1,x2,…,xn,则=(x1+x2+…+xn)就叫做这n个数的算术平均数.
    (3)算术平均数是加权平均数的一种特殊情况,加权平均数包含算术平均数,当加权平均数中的权相等时,就是算术平均数.中考
    35.中位数
    (1)中位数:
    将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.中考
    如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.中考
    (2)中位数代表了这组数据值大小的“中点”,不易受极端值影响,但不能充分利用所有数据的信息.
    (3)中位数仅与数据的排列位置有关,某些数据的移动对中位数没有影响,中位数可能出现在所给数据中也可能不在所给的数据中出现,当一组数据中的个别数据变动较大时,可用中位数描述其趋势.











    2022-2023学年上海市中考数学专项提升仿真模拟试题
    (二模)
    一、选一选
    1. 实数在数轴上对应点的位置如图所示,这四个数中的是( )

    A. B. C. D.
    2. 用激光测距仪测量两座山峰之间的距离,从一座山峰发出的激光秒到达另一座山峰,已知光速为米/秒,则两座山峰之间的距离用科学记数法表示为(  )
    A. 米 B. 米 C. 米 D. 米
    3. 下列图形中,∠2>∠1的是( )
    A. B. C. D.
    4. 如果a﹣b=,那么代数式(a﹣)•的值是(  )
    A. ﹣2 B. 2 C. ﹣ D.
    5. 本学期,大兴区开展了“恰同学少年,品诗词美韵”中华传统诗词大赛小江统计了班级30名同学四月份的诗词背诵数量,具体数据如表所示:
    诗词数量首
    4
    5
    6
    7
    8
    9
    10
    11
    人数
    3
    4
    4
    5
    7
    5
    1
    1
    那么这30名同学四月份诗词背诵数量的众数和中位数分别是  
    A. 11,7 B. 7,5 C. 8,8 D. 8,7
    6. 在由相同的小正方形组成的3×4的网格中,有3个小正方形已经涂黑,请你再涂黑一个小正方形,使涂黑的四个小正方形构成的图形为轴对称图形,则还需要涂黑的小正方形序号是( )

    A. ①或② B. ③或⑥ C. ④或⑤ D. ③或⑨
    7. 小聪按如图所示的程序输入一个正数x,输出的结果为853,则满足条件的x的没有同值至多有(  )

    A 4个 B. 5个 C. 6个 D. 6个以上
    8. 甲、乙两位同学在实验中统计了某一结果出现的频率,给出的统计图如图所示,则符合这一结果的实验可能是( )

    A. 掷一枚正六面体的骰子,出现5点的概率
    B. 掷一枚硬币,出现正面朝上的概率
    C. 任意写出一个整数,能被2整除的概率
    D. 一个袋子中装着只有颜色没有同,其他都相同两个红球和一个黄球,从中任意取出一个是黄球的概率
    9. 如图,小明从A处出发沿北偏西30°方向行走至B处,又沿南偏西50°方向行走至C处,此时再沿与出发时一致的方向行走至D处,则∠BCD的度数为(  )

    A. 100° B. 80° C. 50° D. 20°
    10. 如图,在平面直角坐标系xOy中,点A从出发,绕点O顺时针旋转一周,则点A没有( )

    A. 点M B. 点N C. 点P D. 点Q
    11. 鸡兔同笼问题是我国古代趣题之一,大约在 1500 年前,《孙子算经》中就记载了这个有趣问题.书中是这样叙述的:“今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?”这四句话的意思是:有若干只鸡、兔同在一个笼子里,从上上面数,有 35 个头;从下面数,有 94 只脚 .求笼中各有几只鸡和兔?经计算可得( )

    A. 鸡 20 只,兔 15 只 B. 鸡 12 只,兔 23 只
    C. 鸡 15 只,兔 20 只 D. 鸡 23 只,兔 12 只
    12. 我国古代数学家利用“牟合方盖”(如图甲)找到了球体体积的计算方法.它是由两个圆柱分别从纵横两个方向嵌入一个正方体时两圆柱公共部分形成的几何体.图乙所示的几何体是可以形成“牟合方盖”的一种模型,其直观图如图丙,图中四边形是为体现其直观性所作的辅助线.当其正视图和侧视图完全相同时,它的正视图和俯视图分别可能是(  )

    A. a,b B. a,d C. c,b D. c,d
    13. 已知,菱形ABCD中,AD=1,记∠ABC为∠α(),菱形的面积记作S,菱形的周长记作C.则下列说法中,没有正确的是( )
    A. 菱形的周长C与∠α 的大小无关 B. 菱形的面积S是α的函数
    C. 当=45°时,菱形的面积是 D. 菱形的面积S随α的增大而增大
    14. 如图,点A在观测点北偏东30°方向,且与观测点的距离为8千米,将点A的位置记作A(8,30°).用同样的方法将点B,C的位置分别记作B(8,60°),C(4,60°),则观测点的位置应在( )

    A. 点O1 B. 点O2 C. 点O3 D. 点O4
    15. 如图,是四张形状没有同的纸片,用剪刀沿一条直线将它们分别剪开(只允许剪),没有能够得到两个等腰三角形纸片的是(  )
    A. B. C. D.
    16. 两个少年在绿茵场上游戏.小红从点出发沿线段运动到点,小兰从点出发,以相同的速度沿逆时针运动一周回到点,两人的运动路线如图1所示,其中.两人同时开始运动,直到都停止运动时游戏结束,其间他们与点的距离与时间(单位:秒)的对应关系如图2所示.则下列说确的是( )

    A. 小红的运动路程比小兰的长
    B. 两人分别在1.09秒和7.49秒的时刻相遇
    C. 当小红运动到点的时候,小兰已经了点
    D. 在4.84秒时,两人的距离正好等于的半径
    二、填 空 题
    17. 计算的结果等于_______.
    18. 如图,四边形ABCD为菱形,点D,C落在以B为圆心的弧EF上,则∠A的度数为________.

    19. 如下图,弹性小球从点P(0,3)出发,沿所示方向运动,每当小球碰到矩形OABC的边时反弹,反弹时反射角等于入射角,当小球第1次碰到矩形的边时,记为点P1,第2次碰到矩形的边时,记为点P2,………第n次碰到矩形的边时,记为点Pn,则点P3的坐标是_______________;点P2017的坐标是_____________.

    三、解 答 题
    20. 用“☆”定义一种新运算:对于任意有理数a和b,规定a☆b=ab2+2ab+a.如:1☆3=1×32+2×1×3+1=16.
    (1)求(-2)☆3的值;
    (2)若=8,求a的值.
    21. 在春季运动会上,某学校教工组和学生组进行定点投篮比赛,每组均派五名选手参加,每名选手投篮十次,投中记1分,没有中记零分,3分以上(含3分)视为合格,比赛成绩绘制成条形统计图如下:

    (1)请你根据条形统计图中的数据填写表格:
    组别
    平均数
    中位数
    方差
    合格率
    教工组
       
    3
       
    80%
    学生组
    3.6
       
    3.44
    60%
    (2)如果小亮认为教工组的成绩优于学生组,你认为他的理由是什么?小明认为学生组成绩优于教工组,他的理由又是什么?
    (3)若再让一名体育教师投篮后,六名教师成绩平均数大于学生组成绩中位数设这名体育教师命中m分,求m的值.
    22. 小华发现某月的日历中一个有趣的问题,他用笔在上面画如图所示的十字框,若设任意一个十字框里的五个数为a、b、c、d、k.设中间的一个数为k,如图:试回答下列问题:
    (1)此日历中能画出   个十字框?
    (2)若a+b+c+d=84,求k的值;
    (3)是否存在k的值,使得a+b+c+d=108,请说明理由.

    23. 已知:直线l1与直线l2平行,且它们之间的距离为3,A,B是直线l1上的两个定点,C,D是直线l2上的两个动点(点C在点D的左侧),AB=CD=6,连接AC、BD、BC,将△ABC沿BC折叠得到△A1BC.(如图1)
    (1)当A1与D重合时(如图2),四边形ABDC是什么四边形,为什么?
    (2)当A1与D没有重合时,连接A1D,则A1 D∥BC(没有需证明),此时若以A1,B,C,D为顶点的四边形为矩形,且矩形的边长分别为a,b,求(a+b)2的值.

    24. 已知二次函数.

    (1)该二次函数图象的对称轴是直线________;
    (2)若该二次函数的图象开口向下,当时,的值是2,求抛物线的解析式;
    (3)若对于该抛物线上的两点,当时,均满足,请图象,直接写出的取值范围.
    25. 操作体验
    (1)如图1,已知△ABC,请画出△ABC的中线AD,并判断△ABD与△ACD的面积大小关系.
    (2)如图2,在平面直角坐标系中,△ABC的边BC在x轴上,已知点A(2,4),B(–1,0),C(3,0),试确定过点A的一条直线l,平分△ABC的面积,请写出直线l的表达式.
    综合运用
    (3)如图3,在平面直角坐标系中,如果A(1,4),B(3,2),那么在直线y=–4x+20上是否存在一点C,使直线OC恰好平分四边形OACB的面积?若存在,请计算点C的坐标;若没有存在,请说明理由.

    26. 如图1,将长为10的线段OA绕点O旋转得到OB,点A的运动轨迹为,P是半径OB上一动点,Q是上的一动点,连接PQ.
    (1)当______度时,PQ有值,值为______.
    (2)如图2,若P是OB中点,且于点P,求的长;
    (3)如图3,将扇形AOB沿折痕AP折叠,使点B的对应点恰好落在OA的延长线上,求阴影部分面积.
    (4)如图4,将扇形OAB沿PQ折叠,使折叠后的弧恰好与半径OA相切,切点为C,若,求点O到折痕PQ的距离.














    2022-2023学年上海市中考数学专项提升仿真模拟试题
    (二模)
    一、选一选
    1. 实数在数轴上对应的点的位置如图所示,这四个数中的是( )

    A. B. C. D.
    【正确答案】D

    【详解】根据根据数轴上的数右边总比左边的大,d在最右边,故选D.

    2. 用激光测距仪测量两座山峰之间的距离,从一座山峰发出的激光秒到达另一座山峰,已知光速为米/秒,则两座山峰之间的距离用科学记数法表示为(  )
    A. 米 B. 米 C. 米 D. 米
    【正确答案】C

    【详解】由科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的值与小数点移动的位数相同.当原数值>1时,n是正数;当原数的值<1时,n是负数.因此4×10–5×3×108=1.2×104.
    故选C.
    3. 下列图形中,∠2>∠1的是( )
    A. B. C. D.
    【正确答案】C

    【详解】解:A.∠1=∠2(对顶角相等),故本选项错误;
    B.∠1=∠2(平行四边形对角相等),故本选项错误;
    C.∠2>∠1(三角形的一个外角大于和它没有相邻的任何一个内角),故本选项正确;
    D.如图.∵a∥b,∴∠1=∠3.∵∠2=∠3,∴∠1=∠2.

    故本选项错误.
    故选C.
    4. 如果a﹣b=,那么代数式(a﹣)•的值是(  )
    A. ﹣2 B. 2 C. ﹣ D.
    【正确答案】D

    【详解】分析:直接利用分式的混合运算法则将原式变形进而得出答案.
    详解:(a-)•
    =
    =
    =a-b,
    ∵a-b=,
    ∴原式=.
    故选D.
    点睛:此题主要考查了分式的化简求值,正确化简分式是解题关键.
    5. 本学期,大兴区开展了“恰同学少年,品诗词美韵”中华传统诗词大赛小江统计了班级30名同学四月份的诗词背诵数量,具体数据如表所示:
    诗词数量首
    4
    5
    6
    7
    8
    9
    10
    11
    人数
    3
    4
    4
    5
    7
    5
    1
    1
    那么这30名同学四月份诗词背诵数量的众数和中位数分别是  
    A. 11,7 B. 7,5 C. 8,8 D. 8,7
    【正确答案】D

    【详解】分析:
    根据“众数”和“中位数”的定义进行分析判断即可.
    详解:
    (1)由表中数据可知:背诵了8首诗词的人至多,有7人,
    ∴该组数据的“众数”是8;
    (2)分析表中数据可知:这30个数据按从小到大的顺序排列后,第15和16两个数据都是7,
    ∴这组数据的“中位数”是7.
    综上所述,这组数据的众数是8,中位数是7.
    故选D.
    点睛:熟悉“众数”和“中位数”的定义是解答本题的关键.
    6. 在由相同的小正方形组成的3×4的网格中,有3个小正方形已经涂黑,请你再涂黑一个小正方形,使涂黑的四个小正方形构成的图形为轴对称图形,则还需要涂黑的小正方形序号是( )

    A. ①或② B. ③或⑥ C. ④或⑤ D. ③或⑨
    【正确答案】B

    【详解】根据轴对称图形的概念可得:当涂第③、⑥个时,可以组成一个轴对称图形;
    故选B.
    7. 小聪按如图所示的程序输入一个正数x,输出的结果为853,则满足条件的x的没有同值至多有(  )

    A 4个 B. 5个 C. 6个 D. 6个以上
    【正确答案】B

    【详解】分析:根据输出结果,程序框图确定出满足条件x的值即可.
    详解:若4x+1=853,则有x=213,
    若4x+1=213,则有x=53,
    若4x+1=53,则有x=13,
    若4x+1=13,则有x=3,
    若4x+1=3,则有x=,
    则满足条件的x没有同值至多有5个,
    故选B.
    点睛:此题考查了代数式求值,熟练掌握运算法则是解本题的关键.
    8. 甲、乙两位同学在实验中统计了某一结果出现频率,给出的统计图如图所示,则符合这一结果的实验可能是( )

    A. 掷一枚正六面体的骰子,出现5点的概率
    B. 掷一枚硬币,出现正面朝上的概率
    C. 任意写出一个整数,能被2整除的概率
    D. 一个袋子中装着只有颜色没有同,其他都相同的两个红球和一个黄球,从中任意取出一个是黄球的概率
    【正确答案】D

    【分析】
    【详解】试题解析:A、掷一枚正六面体的骰子,出现5点的概率为,故本选项错误;
    B、掷一枚硬币,出现正面朝上的概率为,故本选项错误;
    C、任意写出一个整数,能被2整除的概率为,故本选项错误;
    D、一个袋子中装着只有颜色没有同,其他都相同的两个红球和一个黄球,从中任意取出一个是黄球的概率为≈0.33,故本选项正确.
    故选D.
    本题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.同时此题在解答中要用到概率公式.
    9. 如图,小明从A处出发沿北偏西30°方向行走至B处,又沿南偏西50°方向行走至C处,此时再沿与出发时一致的方向行走至D处,则∠BCD的度数为(  )

    A. 100° B. 80° C. 50° D. 20°
    【正确答案】B

    【详解】解:如图所示:由题意可得:∠1=30°,∠3=50°,则∠2=30°,故由DC∥AB,则∠4=30°+50°=80°.故选B.

    点睛:此题主要考查了方向角的定义,正确把握定义得出∠3的度数是解题关键.
    10. 如图,在平面直角坐标系xOy中,点A从出发,绕点O顺时针旋转一周,则点A没有( )

    A. 点M B. 点N C. 点P D. 点Q
    【正确答案】C

    【分析】根据旋转的性质:对应点到旋转的距离相等,逐一判断即可.
    【详解】解:连接OA、OM、ON、OP,根据旋转的性质,点A的对应点到旋转的距离与OA的长度应相等

    根据网格线和勾股定理可得:OA=,OM=,ON=,OP=,OQ=5
    ∵OA=OM=ON=OQ≠OP
    ∴则点A没有点P
    故选C.
    此题考查的是旋转的性质和勾股定理,掌握旋转的性质:对应点到旋转的距离相等和用勾股定理求线段的长是解决此题的关键.
    11. 鸡兔同笼问题是我国古代趣题之一,大约在 1500 年前,《孙子算经》中就记载了这个有趣的问题.书中是这样叙述的:“今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?”这四句话的意思是:有若干只鸡、兔同在一个笼子里,从上上面数,有 35 个头;从下面数,有 94 只脚 .求笼中各有几只鸡和兔?经计算可得( )

    A. 鸡 20 只,兔 15 只 B. 鸡 12 只,兔 23 只
    C. 鸡 15 只,兔 20 只 D. 鸡 23 只,兔 12 只
    【正确答案】D

    【分析】设笼中有x只鸡,y只兔,根据上有35个头、下有94只脚,即可得出关于x、y的二元方程组,解之即可得出结论.
    【详解】设笼中有x只鸡,y只兔,根据题意得:

    解得:.
    故选D.
    本题考查了二元方程组的应用,找准等量关系,正确列出二元方程组是解题的关键.
    12. 我国古代数学家利用“牟合方盖”(如图甲)找到了球体体积的计算方法.它是由两个圆柱分别从纵横两个方向嵌入一个正方体时两圆柱公共部分形成的几何体.图乙所示的几何体是可以形成“牟合方盖”的一种模型,其直观图如图丙,图中四边形是为体现其直观性所作的辅助线.当其正视图和侧视图完全相同时,它的正视图和俯视图分别可能是(  )

    A. a,b B. a,d C. c,b D. c,d
    【正确答案】A

    【分析】根据已知中“牟合方盖”的几何特征,分别判断它的正视图和俯视图形状,可得答案.
    【详解】当“牟合方盖”的正视图和侧视图完全相同时,
    它的正视图为:a
    俯视图为:b
    故选A.
    本题考查的知识点是简单空间图形的三视图,难度没有大,属于基础题.
    13. 已知,菱形ABCD中,AD=1,记∠ABC为∠α(),菱形的面积记作S,菱形的周长记作C.则下列说法中,没有正确的是( )
    A. 菱形的周长C与∠α 的大小无关 B. 菱形的面积S是α的函数
    C. 当=45°时,菱形的面积是 D. 菱形的面积S随α的增大而增大
    【正确答案】C

    【详解】分析:根据菱形的性质一一判断即可.
    详解:A、正确.菱形的周长=4,与∠α 的大小无关;
    B、正确.∵S=1•sinα=sinα,∴菱形的面积S是α的函数;
    C、错误,∠α=45°时,菱形的面积=1•1•sin45°=;
    D、正确.∵0°<α<90°,S=sinα,∴菱形的面积S随α的增大而增大.
    故选C.
    点睛:本题考查菱形的性质、锐角三角函数等知识,解题的关键是熟练掌握基本知识,所以中考常考题型.
    14. 如图,点A在观测点北偏东30°方向,且与观测点的距离为8千米,将点A的位置记作A(8,30°).用同样的方法将点B,C的位置分别记作B(8,60°),C(4,60°),则观测点的位置应在( )

    A. 点O1 B. 点O2 C. 点O3 D. 点O4
    【正确答案】A

    【分析】根据点A的位置记作A(8,30°),B(8,60°),C(4,60°),通过操作即可得出观测点的位置.
    【详解】如图所示,连接BC,并延长,点O1,
    可得观测点的位置应在点O1,
    故选A.

    本题考查了坐标确置,正确利用已知点得出观测点是解题的关键.
    15. 如图,是四张形状没有同的纸片,用剪刀沿一条直线将它们分别剪开(只允许剪),没有能够得到两个等腰三角形纸片的是(  )
    A. B. C. D.
    【正确答案】B

    【分析】根据等腰三角形的判定,如果一个三角形有两个角相等,那么这两个角所对的边也相等,据此即可得出
    【详解】如图所示,△ACD和△BCD都是等腰三角形;


    如图所示,△ABC没有能够分成两个等腰三角形;

    如图所示,△ACD和△BCD都是等腰三角形;

    如图所示,△ACD和△BCD都是等腰三角形;

    故选B.
    本题主要考查了等腰三角形的判定,解题时注意:等腰三角形是一个轴对称图形,它的定义既作为性质,又可作为判定办法.
    16. 两个少年在绿茵场上游戏.小红从点出发沿线段运动到点,小兰从点出发,以相同的速度沿逆时针运动一周回到点,两人的运动路线如图1所示,其中.两人同时开始运动,直到都停止运动时游戏结束,其间他们与点的距离与时间(单位:秒)的对应关系如图2所示.则下列说确的是( )

    A. 小红运动路程比小兰的长
    B. 两人分别在1.09秒和7.49秒的时刻相遇
    C. 当小红运动到点的时候,小兰已经了点
    D. 在4.84秒时,两人的距离正好等于的半径
    【正确答案】D

    【分析】利用图象信息一一判断即可解决问题.
    【详解】解:、由图象可知:小红9.68秒时,到达终点,而小兰17.12秒到达终点,小红的运动路程比小兰的短,故本选项没有符合题意;
    、两人分别在1.09秒和7.49秒的时刻与点距离相等,故本选项没有符合题意;
    、由小兰到点D需17.12÷2=8.56秒,而7.49秒的时刻两人与点距离相等可知:当小红运动到点的时候,小兰还没有了点,故本选项没有符合题意;
    、当小红运动到点的时候,两人的距离正好等于的半径,此时,故本选项正确;
    故选:.
    此题考查的是根据函数图象,找出正确结论,解答本题的关键是明确题意,利用数形的思想解答.
    二、填 空 题
    17. 计算的结果等于_______.
    【正确答案】2

    【分析】先套用平方差公式,再根据二次根式的性质计算可得.
    【详解】原式=()2﹣()2=5﹣3=2,
    故2
    本题考查二次根式的混合运算.

    18. 如图,四边形ABCD为菱形,点D,C落在以B为圆心的弧EF上,则∠A的度数为________.

    【正确答案】60°

    【详解】连结BD.∵菱形ABCD中,AB=AD=BC,又∵点D、C落在以B为圆心的弧EF上,∴AB=BC=BD=AD,即△ABD是等边三角形.∴∠A=60°.故答案为60°.

    19. 如下图,弹性小球从点P(0,3)出发,沿所示方向运动,每当小球碰到矩形OABC的边时反弹,反弹时反射角等于入射角,当小球第1次碰到矩形的边时,记为点P1,第2次碰到矩形的边时,记为点P2,………第n次碰到矩形的边时,记为点Pn,则点P3的坐标是_______________;点P2017的坐标是_____________.

    【正确答案】(8,3);(3,0)

    【详解】试题分析:P(0,3)(3,0) (7,4)(8,3) (5,0)(1,4) (0,3),则点P的坐标是以6个位一个循环,则2014÷6=336……1,则=(3,0).
    考点:规律题.
    三、解 答 题
    20. 用“☆”定义一种新运算:对于任意有理数a和b,规定a☆b=ab2+2ab+a.如:1☆3=1×32+2×1×3+1=16.
    (1)求(-2)☆3的值;
    (2)若=8,求a值.
    【正确答案】(1)-32;(2) a=0.

    【详解】分析:(1)原式利用题中新定义化简,计算即可得到结果;
    (2)已知等式利用题中的新定义化简,即可求出a的值.
    详解:(1)(-2)☆3=-2×32+2×(-2)×3+(-2)=-32;
    (2)==8a+8=8,
    解得:a=0.
    点睛:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.
    21. 在春季运动会上,某学校教工组和学生组进行定点投篮比赛,每组均派五名选手参加,每名选手投篮十次,投中记1分,没有中记零分,3分以上(含3分)视为合格,比赛成绩绘制成条形统计图如下:

    (1)请你根据条形统计图中的数据填写表格:
    组别
    平均数
    中位数
    方差
    合格率
    教工组
       
    3
       
    80%
    学生组
    3.6
       
    3.44
    60%
    (2)如果小亮认为教工组的成绩优于学生组,你认为他的理由是什么?小明认为学生组成绩优于教工组,他的理由又是什么?
    (3)若再让一名体育教师投篮后,六名教师成绩平均数大于学生组成绩的中位数设这名体育教师命中m分,求m的值.
    【正确答案】(1)补全表格见解析;(2)从合格率与方差上来看,教工组成绩优于学生组,从平均数、中位数来看,学生组优于教工组;(3)m=9或m=10.

    【分析】(1)根据成绩条形统计图计算出平均数、中位数和方差即可;
    (2)从合格率与方差上来看,教工组成绩优于学生组,从平均数、中位数来看,学生组优于教工组;
    (3)根据六名教师成绩平均数大于学生组成绩的中位数计算即可
    【详解】(1)补全表格如下:
    组别
    平均数
    中位数
    方差
    合格率
    教工组
    3.2
    3
    1.76
    80%
    学生组
    3.6
    4
    3.44
    60%
    (2)从合格率与方差上来看,教工组成绩优于学生组,从平均数、中位数来看,学生组优于教工组;
    (3)依题意,得>4,解得m>8,
    又∵m为正整数,
    ∴m=9或m=10.
    此题考查了条形统计图、中位数,平均数,以及方差,弄清题意是解本题的关键.
    22. 小华发现某月的日历中一个有趣的问题,他用笔在上面画如图所示的十字框,若设任意一个十字框里的五个数为a、b、c、d、k.设中间的一个数为k,如图:试回答下列问题:
    (1)此日历中能画出   个十字框?
    (2)若a+b+c+d=84,求k的值;
    (3)是否存在k的值,使得a+b+c+d=108,请说明理由.

    【正确答案】(1)12;(2)k=21;(3)没有存在k的值,使得a+b+c+d=108,理由见解析.

    【详解】分析:(1)直接利用已知图表分析得出符合题意的位置;
    (2)利用日历中数据之间的关系进而得出k的值;
    (3)利用日历中数据之间的关系进而分析得出答案.
    详解:(1)由题意可得:十字框顶端分别在:1,2,5,6,7,8,9,12,13,14,15,16一共有12个位置;
    (2)由题意可得:设最上面为a,最左边为b,最右边为c,最下面为d,
    则b=a+6,c=a+8,d=a+14,k=a+7,
    故a+a+6+a+8+a+14=84,
    解得:a=14,
    则k=21;
    (3)没有存在k的值,使得a+b+c+d=108,
    理由:当a+b+c+d=108,
    则a+a+6+a+8+a+14=108,
    解得:a=20,故d=34>31(没有合题意),
    故没有存在k的值,使得a+b+c+d=108.
    点睛:此题主要考查了一元方程的应用,正确得出日历中数据之间的关系是解题关键.
    23. 已知:直线l1与直线l2平行,且它们之间的距离为3,A,B是直线l1上的两个定点,C,D是直线l2上的两个动点(点C在点D的左侧),AB=CD=6,连接AC、BD、BC,将△ABC沿BC折叠得到△A1BC.(如图1)
    (1)当A1与D重合时(如图2),四边形ABDC是什么四边形,为什么?
    (2)当A1与D没有重合时,连接A1D,则A1 D∥BC(没有需证明),此时若以A1,B,C,D为顶点的四边形为矩形,且矩形的边长分别为a,b,求(a+b)2的值.

    【正确答案】(1)四边形ABDC是菱形,证明见解析;(2)(a+b)2的值为72或81.

    【详解】分析:(1)根据折叠的性质得到AC=CD,然后根据菱形的判定方法可判断四边形ABDC是菱形;
    (2)讨论:当∠CBD=90°,则∠BCA=90°,由于S△A1CB=S△ABC=6,则S矩形A1CBD=12,即ab=12,由BA1=BA=6,根据勾股定理得到a2+b2=36,然后根据完全平方公式进行计算;当∠BCD=90°,则∠CBA=90°,易得BC=3,而CD=6,所以(a+b)2=(3+6)2..
    详解:(1)四边形ABDC是菱形;
    ∵AB=CD,AB∥CD,
    ∴四边形ABCD为平行四边形,
    又∵A1与D重合时,
    ∴AC=CD,
    ∴四边形ABDC是菱形;
    (2)当以A1,B,C,D为顶点的四边形为矩形如图1时,连结A1B,S△A1CB=S△ABC=×6×3=9
    ∴S矩形A1CBD=18,即ab=18,而在Rt△BCD中,
    ∴a2+b2=CD2=36
    ∴(a+b)2=a2+b2+2ab=36+36=72,
    当以A1,B,C,D为顶点的四边形为矩形如图2时,
    ∴(a+b)2=(3+6)2=81,
    ∴(a+b)2的值为72或81.

    点睛:本题考查了四边形综合题:熟练掌握平四边形的判定与性质以及平行四边形的判定与性质;会运用折叠的性质确定相等的线段和角.
    24. 已知二次函数.

    (1)该二次函数图象的对称轴是直线________;
    (2)若该二次函数的图象开口向下,当时,的值是2,求抛物线的解析式;
    (3)若对于该抛物线上的两点,当时,均满足,请图象,直接写出的取值范围.
    【正确答案】(1)2;(2)y=-2x2+8x-6;(3)-1≤t≤4.

    【分析】(1)利用对称轴公式计算即可;
    (2)构建方程求出a的值即可解决问题;
    (3)当t≤x1≤t+1,x2≥5时,均满足y1≥y2,推出当抛物线开口向下且时满足条件,可得,t+1≤5,由此即可解决问题.
    【详解】解:(1)对称轴x==2.
    故2.
    (2)∵该二次函数的图象开口向下,且对称轴为直线x=2,
    ∴当x=2时,y取到在1≤x≤4上的值为2.
    ∴4a-8a+3a=2.
    ∴a=-2,
    ∴y=-2x2+8x-6;
    (3)如图,


    ∵对称轴为直线x=2,
    ∴x=-1与x=5时的y值相等,
    ∵当t≤x1≤t+1,x2≥5时,均满足y1≥y2,
    ∴当抛物线开口向下,且时满足条件,
    ∴,t+1≤5,
    ∴-1≤t≤4.
    本题考查二次函数的性质,函数的最值问题等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
    25. 操作体验
    (1)如图1,已知△ABC,请画出△ABC的中线AD,并判断△ABD与△ACD的面积大小关系.
    (2)如图2,在平面直角坐标系中,△ABC的边BC在x轴上,已知点A(2,4),B(–1,0),C(3,0),试确定过点A的一条直线l,平分△ABC的面积,请写出直线l的表达式.
    综合运用
    (3)如图3,在平面直角坐标系中,如果A(1,4),B(3,2),那么在直线y=–4x+20上是否存在一点C,使直线OC恰好平分四边形OACB的面积?若存在,请计算点C的坐标;若没有存在,请说明理由.

    【正确答案】(1)S△ABD=S△ACD; (2)y=4x–4; (3)

    【详解】(1)如图1,过A作于点,

    ∵AD为边上的中线,


    (2)如图2,设BC的中点为F,

    ∵直线平分的面积,∴由(1)可知直线过点F,

    设直线的表达式为
    把A、F的坐标代入可得 ,解得,
    ∴直线的表达式为
    (3)如图3,连接AB交OC于点G,

    ∵直线OC恰好平分四边形OACB的面积,
    ∴直线OC过AB的中点,即G为AB的中点,

    设直线OC的表达式为 则 ,解得a=,∴直线OC表达式为,联立两直线解析式可得,解得,
    ∴存在满足条件的点C,其坐标为.
    26. 如图1,将长为10的线段OA绕点O旋转得到OB,点A的运动轨迹为,P是半径OB上一动点,Q是上的一动点,连接PQ.
    (1)当______度时,PQ有值,值为______.
    (2)如图2,若P是OB中点,且于点P,求的长;
    (3)如图3,将扇形AOB沿折痕AP折叠,使点B的对应点恰好落在OA的延长线上,求阴影部分面积.
    (4)如图4,将扇形OAB沿PQ折叠,使折叠后的弧恰好与半径OA相切,切点为C,若,求点O到折痕PQ的距离.

    【正确答案】(1)90; ;(2)(3);(3)

    【分析】(1)先判断出当PQ取时,点Q与点A重合,点P与点B重合,即可得出结论;
    (2)先判断出,用弧长用弧长公式即可得出结论;
    (3)先在 中,,解得,用面积的和差即可得出结论.
    (4)先找点O关于PQ的对称点,连接、、、,证明四边形是矩形,由勾股定理求,从而求出的长,进而得出OM.
    【详解】解:(1)∵P是半径OB上一动点,Q是上的一动点,
    当PQ取时,点Q与点A重合,点P与点B重合,
    此时,,,
    故答案为90,;
    (2)如图2,连接OQ,

    点P是OB的中点,



    在中,,


    (3)由折叠的性质可得,,,
    在中,
    解得,

    (4)找点O关于PQ的对称点,连接、、、,如图4,
    则,,,点是所在圆的圆心,

    折叠后的弧恰好与半径OA相切于C点,


    四边形是矩形,
    在中,,
    在,,

    即O到折痕PQ的距离为,
    此题是圆的综合题,主要考查了圆的性质,弧长公式,扇形的面积公式,熟记公式是解本题的关键.


    中考
    中考
    相关试卷

    2022-2023学年上海市松江区中考数学专项提升仿真模拟试题(一模二模)含解析: 这是一份2022-2023学年上海市松江区中考数学专项提升仿真模拟试题(一模二模)含解析,共46页。试卷主要包含了单 选 题,填 空 题,解 答 题等内容,欢迎下载使用。

    2022-2023学年上海市长宁区中考数学专项提升仿真模拟试题(一模二模)含解析: 这是一份2022-2023学年上海市长宁区中考数学专项提升仿真模拟试题(一模二模)含解析,共63页。试卷主要包含了选一选,填 空 题,解 答 题等内容,欢迎下载使用。

    2022-2023学年上海市杨浦区中考数学专项提升仿真模拟试题(一模二模)含解析: 这是一份2022-2023学年上海市杨浦区中考数学专项提升仿真模拟试题(一模二模)含解析

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map