所属成套资源:最新备战中考数学第一轮复习分点透练真题(全国通用)
第十四讲 三角形-最新备战中考数学第一轮复习分点透练真题(全国通用)
展开
这是一份第十四讲 三角形-最新备战中考数学第一轮复习分点透练真题(全国通用),文件包含第十四讲三角形解析版docx、第十四讲三角形原卷版docx等2份试卷配套教学资源,其中试卷共35页, 欢迎下载使用。
第十四讲 三角形
命题点1 三角形及边角关系
1.(2021•宜宾)若长度分别是a、3、5的三条线段能组成一个三角形,则a的值可以是( )
A.1 B.2 C.4 D.8
【答案】C
【解答】解:由三角形三边关系定理得:5﹣3<a<5+3,
即2<a<8,
即符合的只有4,
故选:C.
2.(2021•南京)下列长度的三条线段与长度为5的线段首尾依次相连能组成四边形的是( )
A.1,1,1 B.1,1,8 C.1,2,2 D.2,2,2
【答案】D
【解答】解:A、∵1+1+1=3<5,
∴此三条线段与长度为5的线段不能组成四边形,故不符合题意;
B、∵1+1+5=7<8,
∴此三条线段与长度为5的线段不能组成四边形,故不符合题意;
C、∵1+2+2=5,
∴此三条线段与长度为5的线段不能组成四边形,故不符合题意;
D、∵2+2+2=6>5,
∴此三条线段与长度为5的线段能组成四边形,故符合题意;
故选:D.
3.(2021•淮安)一个三角形的两边长分别是1和4,若第三边的长为偶数,则第三边的长是 .
【答案】4
【解答】解:设第三边为a,根据三角形的三边关系知,
4﹣1<a<4+1,即3<a<5,
又∵第三边的长是偶数,
∴a为4.
故答案为:4.
4.(2021•大庆)三个数3,1﹣a,1﹣2a在数轴上从左到右依次排列,且以这三个数为边长能构成三角形,则a的取值范围为 .
【答案】﹣3<a<﹣2
【解答】解:∵3,1﹣a,1﹣2a在数轴上从左到右依次排列,
∴3<1﹣a<1﹣2a,
∴a<﹣2,
∵这三个数为边长能构成三角形,
∴3+(1﹣a)>1﹣2a,
∴a>﹣3,
∴﹣3<a<﹣2,
故答案为﹣3<a<﹣2.
命题点2 三角形的内角和及内外角关系
5.(2021•梧州)在△ABC中,∠A=20°,∠B=4∠C,则∠C等于( )
A.32° B.36° C.40° D.128°
【答案】A
【解答】解:∵∠A=20°,∠B=4∠C,
∴在△ABC中,∠A+∠B+∠C=180°,
20°+4∠C+∠C=180°,
5∠C=160°,
∠C=32°.
故选:A.
6.(2021•湖北)如图,在△ABC中,∠C=90°,点D在AC上,DE∥AB,若∠CDE=160°,则∠B的度数为( )
A.40° B.50° C.60° D.70°
【答案】D
【解答】解:∵∠CDE=160°,
∴∠ADE=20°,
∵DE∥AB,
∴∠A=∠ADE=20°,
∴∠B=180°﹣∠A﹣∠C=180°﹣20°﹣90°=70°.
故选:D.
7.(2021•陕西)如图,点D、E分别在线段BC、AC上,连接AD、BE.若∠A=35°,∠B=25°,∠C=50°,则∠1的大小为( )
A.60° B.70° C.75° D.85°
【答案】B
【解答】解:∵∠1=180﹣(∠B+∠ADB),∠ADB=∠A+∠C,
∴∠1=180°﹣(∠B+∠A+∠C)
=180°﹣(25°+35°+50°)
=180°﹣110°
=70°,
故选:B.
8.(2021•毕节市)将一副三角板按如图所示的位置摆放在直尺上,则∠1的度数为( )
A.70° B.75° C.80° D.85°
【答案】B
【解答】解:如图,
∵∠2=90°﹣30°=60°,
∴∠3=180°﹣45°﹣60°=75°,
∵a∥b,
∴∠1=∠3=75°,
故选:B.
9.(2021•河池)如图,∠A=40°,∠CBD是△ABC的外角,∠CBD=120°,则∠C的大小是( )
A.90° B.80° C.60° D.40°
【答案】B
【解答】解:由三角形的外角性质得,∠C=∠CBD﹣∠A=120°﹣40°=80°.
故选:B.
10.(2021•盐城)将一副三角板按如图方式重叠,则∠1的度数为( )
A.45° B.60° C.75° D.105°
【答案】C
【解答】解:根据三角板的度数知,∠ABC=∠ACB=45°,∠DBC=30°,
∴∠1=∠DBC+∠ACB=30°+45°=75°,
故选:C.
11.(2021•河北)定理:三角形的一个外角等于与它不相邻的两个内角的和.
已知:如图,∠ACD是△ABC的外角.求证:∠ACD=∠A+∠B.
证法1:如图,
∵∠A+∠B+∠ACB=180°(三角形内角和定理),
又∵∠ACD+∠ACB=180°(平角定义),
∴∠ACD+∠ACB=∠A+∠B+∠ACB(等量代换).
∴∠ACD=∠A+∠B(等式性质).
证法2:如图,
∵∠A=76°,∠B=59°,
且∠ACD=135°(量角器测量所得)
又∵135°=76°+59°(计算所得)
∴∠ACD=∠A+∠B(等量代换).
下列说法正确的是( )
A.证法1还需证明其他形状的三角形,该定理的证明才完整
B.证法1用严谨的推理证明了该定理
C.证法2用特殊到一般法证明了该定理
D.证法2只要测量够一百个三角形进行验证,就能证明该定理
【答案】B
【解答】解:∵证法1按照定理证明的一般步骤,从已知出发经过严谨的推理论证,得出结论的正确,具有一般性,无需再证明其他形状的三角形,
∴A的说法不正确,不符合题意;
∵证法1按照定理证明的一般步骤,从已知出发经过严谨的推理论证,得出结论的正确,
∴B的说法正确,符合题意;
∵定理的证明必须经过严谨的推理论证,不能用特殊情形来说明,
∴C的说法不正确,不符合题意;
∵定理的证明必须经过严谨的推理论证,与测量次数的多少无关,
∴D的说法不正确,不符合题意;
综上,B的说法正确.
故选:B.
命题点3 三角形的重要线段
类型一 与中点有关的问题
12.(2018•贵阳)如图,在△ABC中有四条线段DE,BE,EF,FG,其中有一条线段是△ABC的中线,则该线段是( )
A.线段DE B.线段BE C.线段EF D.线段FG
【答案】B
【解答】解:根据三角形中线的定义知线段BE是△ABC的中线,
故选:B.
13.(2021•泰州)如图,四边形ABCD中,AB=CD=4,且AB与CD不平行,P、M、N分别是AD、BD、AC的中点,设△PMN的面积为S,则S的范围是 .
【答案】0<S≤2
【解答】解:作ME⊥PN,如图所示,
∵P,M,N分别是AD,BD,AC中点,
∴PM=AB=2,PN=CD=2,
∴S△PMN==ME,
∵AB与CD不平行,
∴M,N不能重合,
∴ME>0
∵ME≤MP=2
∴0<S△≤2.
故答案是:0<S≤2.
类型二 与角平分线有关的问题
14.(2021•长沙)如图,在△ABC中,∠C=90°,AD平分∠BAC交BC于点D,DE⊥AB,垂足为E,若BC=4,DE=1.6,则BD的长为 .
【答案】2.4
【解答】解:∵AD平分∠BAC,DE⊥AB,∠C=90°,
∴CD=DE,
∵DE=1.6,
∴CD=1.6,
∴BD=BC﹣CD=4﹣1.6=2.4.
故答案为:2.4
15.(2021•青海)如图,在四边形ABCD中,∠A=90°,AD=3,BC=5,对角线BD平分∠ABC,则△BCD的面积为( )
A.8 B.7.5 C.15 D.无法确定
【答案】B
【解答】解:过D点作DE⊥BC于E,如图,
∵BD平分∠ABC,DE⊥BC,DA⊥AB,
∴DE=DA=3,
∴△BCD的面积=×5×3=7.5.
故选:B.
类型三 与高有关的问题
16.(2021•罗湖区)如图,四边形ABCD中,AB∥CD,∠ABC=60°,AD=BC=CD=4,点M是四边形ABCD内的一个动点,满足∠AMD=90°,则点M到直线BC的距离的最小值为 .
【答案】3﹣2
【解答】解:取AD的中点O,连接OM,过点M作ME⊥BC交BC的延长线于E,过点O作OF⊥BC于F,交CD于G,则OM+ME≥OF.
∵∠AMD=90°,AD=4,OA=OD,
∴OM=AD=2,
∵AB∥CD,
∴∠GCF=∠B=60°,
∴∠DGO=∠CGF=30°,
∵AD=BC,
∴∠DAB=∠B=60°,
∴∠ADC=∠BCD=120°,
∴∠DOG=30°=∠DGO,
∴DG=DO=2,
∵CD=4,
∴CG=2,
∴OG=2OD•cos30°=2,GF=,OF=3,
∴ME≥OF﹣OM=3﹣2,
∴当O,M,E共线时,ME的值最小,最小值为3﹣2.
命题点4 等腰三角形
17.(2020•福建)如图,AD是等腰三角形ABC的顶角平分线,BD=5,则CD等于( )
A.10 B.5 C.4 D.3
【答案】B
【解答】解:∵AD是等腰三角形ABC的顶角平分线,BD=5,
∴CD=5.
故选:B.
15.(2021•赤峰)如图,AB∥CD,点E在线段BC上,CD=CE.若∠ABC=30°,则∠D的度数为( )
A.85° B.75° C.65° D.30°
【答案】B
【解答】解:∵AB∥CD,
∴∠C=∠ABC=30°,
又∵CD=CE,
∴∠D=∠CED,
∵∠C+∠D+∠CED=180°,即30°+2∠D=180°,
∴∠D=75°.
故选:B.
18.(2021•青海)已知a,b是等腰三角形的两边长,且a,b满足+(2a+3b﹣13)2=0,则此等腰三角形的周长为( )
A.8 B.6或8 C.7 D.7或8
【答案】D
【解答】解:∵+(2a+3b﹣13)2=0,
∴,
解得:,
当b为底时,三角形的三边长为2,2,3,周长为7;
当a为底时,三角形的三边长为2,3,3,则周长为8,
∴等腰三角形的周长为7或8.
故选:D.
19.(2021•娄底)如图,△ABC中,AB=AC=2,P是BC上任意一点,PE⊥AB于点E,PF⊥AC于点F,若S△ABC=1,则PE+PF= .
【答案】1
【解答】解:如图所示,连接AP,则S△ABC=S△ACP+S△ABP,
∵PE⊥AB于点E,PF⊥AC于点F,
∴S△ACP=AC×PF,S△ABP=AB×PE,
又∵S△ABC=1,AB=AC=2,
∴1=AC×PF+AB×PE,
即1=×2×PF+×2×PE,
∴PE+PF=1,
故答案为:1.
20.(2021•朝阳)如图,在平面直角坐标系中,点A的坐标为(5,0),点M的坐标为(0,4),过点M作MN∥x轴,点P在射线MN上,若△MAP为等腰三角形,则点P的坐标为 .
【答案】(,4)或(,4)或(10,4)
【解答】解:设点P的坐标为(x,4),
分三种情况:①PM=PA,
∵点A的坐标为(5,0),点M的坐标为(0,4),
∴PM=x,PA=,
∵PM=PA,
∴x=,解得:x=,
∴点P的坐标为(,4);
②MP=MA,
∵点A的坐标为(5,0),点M的坐标为(0,4),
∴MP=x,MA==,
∵MP=MA,
∴x=,
∴点P的坐标为(,4);
③AM=AP,
∵点A的坐标为(5,0),点M的坐标为(0,4),
∴AP=,MA==,
∵AM=AP,
∴=,解得:x1=10,x2=0(舍去),
∴点P的坐标为(10,4);
综上,点P的坐标为(,4)或(,4)或(10,4).
故答案为:(,4)或(,4)或(10,4).
21.(2021•绍兴)如图,在△ABC中,∠A=40°,点D,E分别在边AB,AC上,BD=BC=CE,连结CD,BE.
(1)若∠ABC=80°,求∠BDC,∠ABE的度数;
(2)写出∠BEC与∠BDC之间的关系,并说明理由.
【答案】(1)∠EBC=60°, ∠ABE=20° (2)∠BEC+∠BDC=110°
【解答】解:(1)∵∠ABC=80°,BD=BC,
∴∠BDC=∠BCD=(180°﹣80°)=50°,
∵∠A+∠ABC+∠ACB=180°,∠A=40°,
∴∠ACB=180°﹣40°﹣80°=60°,
∵CE=BC,
∴△BCE是等边三角形,
∴∠EBC=60°,
∴∠ABE=∠ABC﹣∠EBC=80°﹣60°=20°;
(2)∠BEC与∠BDC之间的关系:∠BEC+∠BDC=110°,
理由:设∠BEC=α,∠BDC=β,
在△ABE中,α=∠A+∠ABE=40°+∠ABE,
∵CE=BC,
∴∠CBE=∠BEC=α,
∴∠ABC=∠ABE+∠CBE=∠A+2∠ABE=40°+2∠ABE,
在△BDC中,BD=BC,
∴∠BDC+∠BCD+∠DBC=2β+40°+2∠ABE=180°,
∴β=70°﹣∠ABE,
∴α+β=40°+∠ABE+70°﹣∠ABE=110°,
∴∠BEC+∠BDC=110°.
命题点5 等边三角形
22.(2020•铜仁市)已知等边三角形一边上的高为2,则它的边长为( )
A.2 B.3 C.4 D.4
【答案】C
【解答】解:根据等边三角形:三线合一,
设它的边长为x,可得:,
解得:x=4,x=﹣4(舍去),
故选:C.
23.(2019•天水)如图,等边△OAB的边长为2,则点B的坐标为( )
A.(1,1) B.(1,) C.(,1) D.(,)
【答案】B
【解答】解:过点B作BH⊥AO于H点,∵△OAB是等边三角形,
∴OH=1,BH=.
∴点B的坐标为(1,).
故选:B.
24.(2021•益阳)如图,AB∥CD,△ACE为等边三角形,∠DCE=40°,则∠EAB等于( )
A.40° B.30° C.20° D.15°
【答案】C
【解答】解:∵AB∥CD,
∴∠DCA+∠CAB=180°,即∠DCE+∠ECA+∠EAC+∠EAB=180°,
∵△ACE为等边三角形,
∴∠ECA=∠EAC=60°,
∴∠EAB=180°﹣40°﹣60°﹣60°=20°.
故选:C.
命题点6 直角三角形
类型一 勾股定理及其应用
25.(2021•襄阳)我国古代数学著作《九章算术》中记载了一个问题:“今有池方一丈,葭(jiā)生其中,出水一尺.引葭赴岸,适与岸齐.问水深几何.”(丈、尺是长度单位,1丈=10尺)其大意为:有一个水池,水面是一个边长为10尺的正方形,在水池正中央有一根芦苇,它高出水面1尺.如果把这根芦苇拉向水池一边的中点,它的顶端恰好到达池边的水面.水的深度是多少?则水深为( )
A.10尺 B.11尺 C.12尺 D.13尺
【答案】C
【解答】解:设水深为h尺,则芦苇长为(h+1)尺,
根据勾股定理,得(h+1)2﹣h2=(10÷2)2,
解得h=12,
∴水深为12尺,
故选:C.
26.(2020•广西)《九章算术》是古代东方数学代表作,书中记载:今有开门去阃(读kǔn,门槛的意思)一尺,不合二寸,问门广几何?题目大意是:如图1、2(图2为图1的平面示意图),推开双门,双门间隙CD的距离为2寸,点C和点D距离门槛AB都为1尺(1尺=10寸),则AB的长是( )
A.50.5寸 B.52寸 C.101寸 D.104寸
【答案】C
【解答】解:取AB的中点O,过D作DE⊥AB于E,如图2所示:
由题意得:OA=OB=AD=BC,
设OA=OB=AD=BC=r寸,
则AB=2r(寸),DE=10(寸),OE=CD=1(寸),AE=(r﹣1)寸,
在Rt△ADE中,AE2+DE2=AD2,
即(r﹣1)2+102=r2,
解得:r=50.5,
∴2r=101(寸),
∴AB=101寸,
故选:C.
27.(2021•恩施州)《九章算术》被尊为古代数学“群经之首”,其卷九勾股篇记载:今有圆材埋于壁中,不知大小.以锯锯之,深一寸,锯道长一尺.问径几何?如图,大意是,今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯这木材,锯口深CD等于1寸,锯道AB长1尺,问圆形木材的直径是多少?(1尺=10寸)
答:圆材直径 寸.
【答案】26
【解答】解:过圆心O作OC⊥AB于点C,延长OC交圆于点D,连接OA,如图:
∵OC⊥AB,
∴AC=BC=AB,.
则CD=1寸,AC=BC=AB=5寸.
设圆的半径为x寸,则OC=(x﹣1)寸.
在Rt△OAC中,由勾股定理得:
52+(x﹣1)2=x2,
解得:x=13.
∴圆材直径为2×13=26(寸).
故答案为:26.
28.(2021•岳阳)《九章算术》是我国古代数学名著,书中有下列问题:“今有户高多于广六尺八寸,两隅相去适一丈.问户高、广各几何?”其意思为:今有一门,高比宽多6尺8寸,门对角线距离恰好为1丈.问门高、宽各是多少?(1丈=10尺,1尺=10寸)如图,设门高AB为x尺,根据题意,可列方程为 .
【答案】(x﹣6.8)2+x2=102
【解答】解:设门高AB为x尺,则门的宽为(x﹣6.8)尺,AC=1丈=10尺,
依题意得:AB2+BC2=AC2,
即(x﹣6.8)2+x2=102.
故答案为:(x﹣6.8)2+x2=102.
类型二 直角三角形的性质及计算
29.(2021•新疆)如图,在Rt△ABC中,∠ACB=90°,∠A=30°,AB=4,CD⊥AB于点D,E是AB的中点,则DE的长为( )
A.1 B.2 C.3 D.4
【答案】A
【解答】解:∵∠ACB=90°,∠A=30°,
∴∠B=60°,
∵E是AB的中点,AB=4,
∴CE=BE=,
∴△BCE为等边三角形,
∵CD⊥AB,
∴DE=BD=,
故选:A.
30.(2018•陕西)如图,在Rt△ABC中,∠ACB=90°,∠A=65°,CD⊥AB,垂足为D,E是BC的中点,连接ED,则∠DEC的度数是( )
A.25° B.30° C.40° D.50°
【答案】D
【解答】解:∵∠ACB=90°,∠A=65°,
∴∠B=90°﹣65°=25°,
∵CD⊥AB,
∴∠CDB=90°,
∴∠DCB=65°,
∵CE=EB,
∴DE=CE=EB,
∴∠EDC=∠ECD=65°,
∴∠DEC=180°﹣65°﹣65°=50°,
故选:D
31.(2020•常州)如图,AB是⊙O的弦,点C是优弧AB上的动点(C不与A、B重合),CH⊥AB,垂足为H,点M是BC的中点.若⊙O的半径是3,则MH长的最大值是( )
A.3 B.4 C.5 D.6
【答案】A
【解答】解:∵CH⊥AB,垂足为H,
∴∠CHB=90°,
∵点M是BC的中点.
∴MH=BC,
∵BC的最大值是直径的长,⊙O的半径是3,
∴MH的最大值为3,
故选:A.
32. (2021•玉林)如图,某港口P位于东西方向的海岸线上,甲、乙轮船同时离开港口,各自沿一固定方向航行,甲、乙轮船每小时分别航行12海里和16海里,1小时后两船分别位于点A,B处,且相距20海里,如果知道甲船沿北偏西40°方向航行,则乙船
沿 方向航行.
【答案】 北偏东50°
【解答】解:由题意可知:AP=12,BP=16,AB=20,
∵122+162=202,
∴△APB是直角三角形,
∴∠APB=90°,
由题意知∠APN=40°,
∴∠BPN=90°﹣∠APN=90°﹣40°=50°,
即乙船沿北偏东50°方向航行,
故答案为:北偏东50°.
33.(2020•黔西南州)如图,在Rt△ABC中,∠C=90°,点D在线段BC上,且∠B=30°,∠ADC=60°,BC=3,则BD的长度为 .
【答案】2.
【解答】解:∵∠C=90°,∠ADC=60°,
∴∠DAC=30°,
∴CD=AD,
∵∠B=30°,∠ADC=60°,
∴∠BAD=30°,
∴BD=AD,
∴BD=2CD,
∵BC=3,
∴CD+2CD=3,
∴CD=,
∴DB=2,
故答案为:2.
34.(2010•镇江)如图,Rt△ABC中,∠ACB=90°,DE过点C,且DE∥AB,若∠ACD=50°,则∠A= 度,∠B= 度.
【答案】50°,40°
【解答】解:∵DE∥AB,∠ACD=50°,
∴∠A=∠ACD=50°,
∵∠ACB=90°,
∴∠B=90°﹣∠A=90°﹣50°=40°.
命题点7 等腰直角三角形
35.(2019•成都)将等腰直角三角形纸片和矩形纸片按如图方式叠放在一起,若∠1=30°,则∠2的度数为( )
A.10° B.15° C.20° D.30°
【答案】B
【解答】解:∵AB∥CD,
∴∠1=∠ADC=30°,
又∵等腰直角三角形ADE中,∠ADE=45°,
∴∠1=45°﹣30°=15°,
故选:B.
36.(2020•玉林)如图是A,B,C三岛的平面图,C岛在A岛的北偏东35°方向,B岛在A岛的北偏东80°方向,C岛在B岛的北偏西55°方向,则A,B,C三岛组成一个( )
A.等腰直角三角形 B.等腰三角形
C.直角三角形 D.等边三角形
【答案】A
【解答】解:如图,过点C作CD∥AE交AB于点D,
∴∠DCA=∠EAC=35°,
∵AE∥BF,
∴CD∥BF,
∴∠BCD=∠CBF=55°,
∴∠ACB=∠ACD+∠BCD=35°+55°=90°,
∴△ABC是直角三角形.
∵∠CAD=∠EAD﹣∠CAE=80°﹣35°=45°,
∴∠ABC=180°﹣∠ACB﹣∠CAD=45°,
∴CA=CB,
∴△ABC是等腰直角三角形.
故选:A.
37.(2021•扬州)如图,在4×4的正方形网格中有两个格点A、B,连接AB,在网格中再找一个格点C,使得△ABC是等腰直角三角形,满足条件的格点C的个数是( )
A.2 B.3 C.4 D.5
【答案】B
【解答】解:如图:分情况讨论:
①AB为等腰直角△ABC底边时,符合条件的格点C点有0个;
②AB为等腰直角△ABC其中的一条腰时,符合条件的格点C点有3个.
故共有3个点,
故选:B.
38.(2020•威海)七巧板是大家熟悉的一种益智玩具.用七巧板能拼出许多有趣的图案.小李将一块等腰直角三角形硬纸板(如图①)切割七块,正好制成一副七巧板(如图②).已知AB=40cm,则图中阴影部分的面积为( )
A.25cm2 B.cm2 C.50cm2 D.75cm2
【答案】C
【解答】解:如图:设OF=EF=FG=xcm,
∴OE=OH=2x(cm),
在Rt△EOH中,EH=2x(cm),
由题意EH=20cm,
∴20=2x,
∴x=5,
∴阴影部分的面积=(5)2=50(cm2)
故选:C.
39.(2020•德阳)已知:等腰直角三角形ABC的腰长为4,点M在斜边AB上,点P为该平面内一动点,且满足PC=2,则PM的最小值为( )
A.2 B.2﹣2 C.2+2 D.2
【答案】B
【解答】解:∵等腰直角三角形ABC的腰长为4,
∴斜边AB=4,
∵点P为该平面内一动点,且满足PC=2,
∴点P在以C为圆心,PC为半径的圆上,
当点P在斜边AB的中线上时,PM的值最小,
∵△ABC是等腰直角三角形,
∴CM=AB=2,
∵PC=2,
∴PM=CM﹣CP=2﹣2,
故选:B.
40.(2021•绵阳)如图,在等腰直角△ABC中,∠ACB=90°,M、N分别为BC、AC上的点,∠CNM=50°,P为MN上的点,且PC=MN,∠BPC=117°,则∠ABP=( )
A.22° B.23° C.25° D.27°
【答案】A
【解答】解:如图,过点M作MG⊥BC于M,过点N作NG⊥AC于N,连接CG交MN于H,
∴∠GMC=∠ACB=∠CNG=90°,
∴四边形CMGN是矩形,
∴CH=CG=MN,
∵PC=MN,
存在两种情况:
如图,CP=CP1=MN,
①P是MN中点时,
∴MP=NP=CP,
∴∠CNM=∠PCN=50°,∠PMC=∠PCM=90°﹣50°=40°,
∴∠CPM=180°﹣40°﹣40°=100°,
∵△ABC是等腰直角三角形,
∴∠ABC=45°,
∵∠CPB=117°,
∴∠BPM=117°﹣100°=17°,
∵∠PMC=∠PBM+∠BPM,
∴∠PBM=40°﹣17°=23°,
∴∠ABP=45°﹣23°=22°.
②CP1=MN,
∴CP=CP1,
∴∠CPP1=∠CP1P=80°,
∵∠BP1C=117°,
∴∠BP1M=117°﹣80°=37°,
∴∠MBP1=40°﹣37°=3°,
而图中∠MBP1>∠MBP,所以此种情况不符合题意.
故选:A.
相关试卷
这是一份第十四讲 三角形-备战中考数学第一轮专题复习真题分点透练(全国通用),文件包含第十四讲三角形解析版docx、第十四讲三角形原卷版docx等2份试卷配套教学资源,其中试卷共49页, 欢迎下载使用。
这是一份第二十四讲 视图与投影-最新备战中考数学第一轮复习分点透练真题(全国通用),文件包含第二十四讲视图与投影解析版docx、第二十四讲视图与投影原卷版docx等2份试卷配套教学资源,其中试卷共18页, 欢迎下载使用。
这是一份第十九讲 矩形、菱形、正方形-最新备战中考数学第一轮复习分点透练真题(全国通用),文件包含第十九讲矩形菱形正方形解析版docx、第十九讲矩形菱形正方形原卷版docx等2份试卷配套教学资源,其中试卷共38页, 欢迎下载使用。