2022-2023学年九年级上册数学人教版第二十二章二次函数(单元测试)
展开第二十二章二次函数(单元测试)2022-2023学年九年级上册数学人教版
一、单选题(本大题共12小题,每小题3分,共36分)。
1.抛物线的顶点坐标是( )
A. B. C. D.
2.如图,抛物线的对称轴为,下列结论正确的是( )
A. B.
C.当时,随的增大而减小 D.当时,随的增大而减小
3.在羽毛球比赛中,某次羽毛球的运动路线呈抛物线形,羽毛球距地面的高度与水平距离之间的关系如图所示,点B为落地点,且,,羽毛球到达的最高点到y轴的距离为,那么羽毛球到达最高点时离地面的高度为( )
A. B. C. D.
4.下列关于二次函数的图像和性质的叙述中,正确的是( )
A.点在函数图像上 B.开口方向向上
C.对称轴是直线 D.与直线有两个交点
5.抛物线经过点、,且与y轴交于点,则当时,y的值为( )
A. B. C. D.5
6.在平面直角坐标系中,将二次函数的图像向左平移2个单位长度,再向上平移1个单位长度,所得抛物线对应的函数表达式为( )
A. B. C. D.
7.已知抛物线的对称轴在轴右侧,现将该抛物线先向右平移3个单位长度,再向上平移1个单位长度后,得到的抛物线正好经过坐标原点,则的值是( )
A.或2 B. C.2 D.
8.关于二次函数,下列说法正确的是( )
A.函数图象的开口向下 B.函数图象的顶点坐标是
C.该函数有最大值,是大值是5 D.当时,y随x的增大而增大
9.已知二次函数的图象上有两点A(x1,2023)和B(x2,2023),则当时,二次函数的值是( )
A.2020 B.2021 C.2022 D.2023
10.抛物线y=x2+3上有两点A(x1,y1),B(x2,y2),若y1<y2,则下列结论正确的是( )
A.0≤x1<x2 B.x2<x1≤0
C.x2<x1≤0或0≤x1<x2 D.以上都不对
11.二次函数的图象与一次函数在同一平面直角坐标系中的图象可能是( )
A. B. C. D.
12.如图,二次函数的图象关于直线对称,与x轴交于,两点,若,则下列四个结论:①,②,③,④.
正确结论的个数为( )
A.1个 B.2个 C.3个 D.4个
二、填空题(本大题共8小题,每小题3分,共24分)。
13.如图,是一名男生推铅球时,铅球行进过程中形成的抛物线.按照图中所示的平面直角坐标系,铅球行进高度y(单位:m)与水平距离x(单位:m)之间的关系是,则铅球推出的水平距离OA的长是_____m.
14.如图,抛物线与轴交于点,与轴交于A,两点,则该抛物线的解析式是____.
15.把二次函数y=x2+4x+m的图像向上平移1个单位长度,再向右平移3个单位长度,如果平移后所得抛物线与坐标轴有且只有一个公共点,那么m应满足条件:________.
16.如图,抛物线y=ax2与直线y=bx+c的两个交点坐标分别为A(﹣3,6),B(1,3),则方程ax2﹣bx﹣c=0的解是_________.
17.如图,二次函数的图像过点(-1,0),对称轴为直线x=2,下列结论:①4a+b=0;②9a+c<3b;③8a+7b+2c>0;④若点A(-3,)、点B()、点C()在该函数图像上,则:⑤若方程的两根为,且,则其中正确的结论有__________. (只填序号)
18.二次函数的部分图象如图所示,由图象可知,方程的解为___________________;不等式的解集为___________________.
19.已知二次函数,当时,函数值y的最小值为1,则a的值为_______.
20.平面直角坐标系中,已知点,且实数m,n满足,则点P到原点O的距离的最小值为___________.
三、解答题(本大题共5小题,每小题8分,共40分)。
21.如图,抛物线y=x2+x﹣2与x轴交于A、B两点,与y轴交于点C.
(1)求点A,点B和点C的坐标;
(2)抛物线的对称轴上有一动点P,求PB+PC的值最小时的点P的坐标.
22.某公司电商平台,在2021年五一长假期间,举行了商品打折促销活动,经市场调查发现,某种商品的周销售量y(件)是关于售价x(元/件)的一次函数,下表仅列出了该商品的售价x,周销售量y,周销售利润W(元)的三组对应值数据.
x | 40 | 70 | 90 |
y | 180 | 90 | 30 |
W | 3600 | 4500 | 2100 |
(1)求y关于x的函数解析式(不要求写出自变量的取值范围);
(2)若该商品进价a(元/件),售价x为多少时,周销售利润W最大?并求出此时的最大利润;
(3)因疫情期间,该商品进价提高了m(元/件)(),公司为回馈消费者,规定该商品售价x不得超过55(元/件),且该商品在今后的销售中,周销售量与售价仍满足(1)中的函数关系,若周销售最大利润是4050元,求m的值.
23.如图,抛物线的顶点为A(h,-1),与y轴交于点B,点F(2,1)为其对称轴上的一个定点.
(1)求这条抛物线的函数解析式;
(2)已知直线l是过点C(0,-3)且垂直于y轴的定直线,若抛物线上的任意一点P(m,n)到直线l的距离为d,求证:PF=d;
(3)已知坐标平面内的点D(4,3),请在抛物线上找一点Q,使△DFQ的周长最小,并求此时DFQ周长的最小值及点Q的坐标.
24.在平面直角坐标系xOy中,已知抛物线y=-x2+2mx+3m,点A(3,0).
(1)当抛物线过点A时,求抛物线的解析式;
(2)证明:无论m为何值,抛物线必过定点D,并求出点D的坐标;
(3)在(1)的条件下,抛物线与y轴交于点B,点P是抛物线上位于第一象限的点,连接AB,PD交于点M,PD与y轴交于点N.设S=S△PAM-S△BMN,问是否存在这样的点P,使得S有最大值?若存在,请求出点P的坐标,并求出S的最大值;若不存在,请说明理由.
25.如图,抛物线经过点,点,与y轴交于点C,抛物线的顶点为D.
(1)求抛物线的解析式;
(2)抛物线上是否存在点P,使的面积是面积的4倍,若存在,请直接写出点P的坐标:若不存在,请说明理由.
参考答案:
1.B
2.C
3.D
4.D
5.A
6.B
7.B
8.D
9.C
10.D
11.A
12.B
13.10
14.
15.m>3
16.x1=﹣3,x2=1
17.①②③⑤
18. , 或
19.
20.
21.(1)A(﹣2,0),B(1,0),C(0,﹣2).(2)P(,)
22.(1);(2)售价60元时,周销售利润最大为4800元;(3)
23.(1);(2)见解析;(3),
24.(1)y=-x2+2x+3;
(2)证明见解析,;
(3)存在,点的坐标是(1,4),.
25.(1)
(2)存在,,
初中数学人教版九年级上册22.1.1 二次函数单元测试随堂练习题: 这是一份初中数学人教版九年级上册22.1.1 二次函数单元测试随堂练习题,共14页。试卷主要包含了对于抛物线下列说法,抛物线的顶点坐标是等内容,欢迎下载使用。
数学九年级上册22.1.1 二次函数单元测试课后测评: 这是一份数学九年级上册22.1.1 二次函数单元测试课后测评,共21页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
初中数学人教版九年级上册第二十二章 二次函数综合与测试单元测试一课一练: 这是一份初中数学人教版九年级上册第二十二章 二次函数综合与测试单元测试一课一练,共22页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。