2022年人教版 中考数学第一轮复习专题集训 图形的旋转 专题
展开这是一份2022年人教版 中考数学第一轮复习专题集训 图形的旋转 专题,共8页。试卷主要包含了规定等内容,欢迎下载使用。
人教版2022年中考数学第一轮复习专题集训
(《图形的旋转》专题)
题型一:旋转的定义及性质
1. 我国主要银行的商标设计基本上都融入了中国古代钱币的图案,下图所示是我国四大银行的行标图案,其中是轴对称图形而不是中心对称图形的是( )
2.规定:在平面内,将一个图形绕着某一点旋转一定的角度(小于周角)后能和自身重合,则称此图形为旋转对称图形.下列图形是旋转对称图形,且有一个旋转角为60°的是( )
A.正三角形 B.正方形 C.正六边形 D.正十边形
3.如图,在方格纸中,选择标有序号①②③④中的一个小正方形涂黑,与图中阴影部分构成中心对称图形,涂黑的小正方形序号是________.
4.如图,在平面直角坐标系中,△OAB的三个顶点的坐标分别为O(0,0),A(6,3),B(0,5).
(1)画出△OAB绕原点O逆时针方向旋转90°后得到的△OA1B1;
(2)画出△OAB关于原点O的中心对称图形△OA2B2;
(3)猜想:∠OAB的度数为多少?并说明理由.
5.如图,在四边形ABCD中,AB=BC,∠ABC=60°,E是CD边上一点,连接BE,以BE为一边作等边三角形BEF,请用直尺在图中连接一条线段,使图中存在经过旋转可完全重合的两个三角形,并说明这两个三角形经过什么样的旋转可重合.
题型二:利用旋转进行角度计算
1. 如图,将△ABC绕点C顺时针旋转90°得到△EDC.若点A,D,E在同一条直线上,∠ACB=20°,则∠ADC的度数是( )
A.55° B.60° C.65° D.70°
2. 如图,在Rt△ABC中,∠BAC=90°,将△ABC绕点A顺时针旋转90°后得到的△AB′C′(点B的对应点是点B′,点C的对应点是点C′),连接CC′.若∠CC′B′=32°,则∠B的大小是( )
A.32° B.64° C.77° D.87°
3.一副三角板按如图位置摆放,将三角板ABC绕着点B逆时针旋转α(0°<α<180°).如果AB∥DE,那么α=________.
4.如图,正五边形ABCDE绕点A顺时针旋转后得到正五边形AB′C′D′E′,旋转角为α(0°≤α≤90°).若DE⊥B′C′,则α=________°.
5. 如图,在△ABC中,AC=BC,将△ABC绕点C逆时针旋转角α(0°<α<90°)得到△A1B1C,连接BB1.设CB1交AB于D,A1B1分别交AB,AC于E,F.在图中不再添加其他任何线段的情况下,请你找出一对全等的三角形,并加以证明(△ABC与△A1B1C全等除外).
6.如图①,在△ABC中,AB=AC,∠BAC=90°,D,E分别是AB,AC边的中点.将△ABC绕点A顺时针旋转α角(0°<α<180°),得到△AB′C′(如图②).
(1)探究DB′与EC′的数量关系,并给予证明.
(2)当DB′∥AE时,试求旋转角α的度数.
题型三:利用旋转求长度、面积
1. 如图,在△ABC中,AB=4,AC=3,BC=2,将△ABC绕点A顺时针旋转60°得到△AED,则BE的长为( )
A.5 B.4 C.3 D.2
2.如图,在Rt△ABC中,∠C=90°,∠ABC=30°,AC=2,△ABC绕点C顺时针旋转得△A1B1C,当A1落在AB边上时,连接B1B,取BB1的中点D,连接A1D,则A1D的长度是( )
A. B.2 C.3 D.2
3.如图,将△ABC绕点A逆时针旋转得到△ADE,点C和点E是对应点.若∠CAE=90°,AB=1,则BD=________.
4.如图,在△ABC中,∠C=90°,AC=BC=,将△ABC绕点A按顺时针方向旋转60°到△AB′C′的位置,连接C′B,则C′B=________.
题型四:旋转的综合应用
1. 如图,将线段AB绕点O顺时针旋转90°得到线段A′B′,则A(-2,5)的对应点A′的坐标是( )
A.(2,5) B.(5,2) C.(2,-5) D.(5,-2)
2. 如图,在Rt△ABC中,∠ACB=90°,AC=5,BC=12,将△ABC绕点B顺时针旋转60°,得到△BDE,连接DC交AB于点F,则△ACF与△BDF的周长之和为( )
A.44 B.43 C.42 D.41
3.若点(a,1)与(-2,b)关于原点对称,则ab=________.
4.如图,四边形ABCD是正方形,E,F分别是DC和CB的延长线上的点,且DE=BF,连接AE,AF,EF.
(1)求证:△ADE≌△ABF;
(2)△ABF可以由△ADE绕旋转中心________点,按顺时针旋转________度得到;
(3)若BC=8,DE=6,求△AEF的面积.
5.如图,在△ABC中,AB=AC,把△ABC绕A点沿顺时针方向旋转得到△ADE,连接BD,CE交于点F.
(1)求证:△AEC≌△ADB;
(2)若AB=2,∠BAC=45°,当四边形ADFC是菱形时,求BF的长.
6.如图①,在等边△ABC中,点D,E分别在边AB,AC上,AD=AE,连接BE,CD,点M、N、P分别是BE、CD、BC的中点.
(1)观察猜想:图①中,△PMN的形状是______________;
(2)探究证明:把△ADE绕点A逆时针方向旋转到图②的位置,△PMN的形状是否发生改变?并说明理由;
(3)拓展延伸:把△ADE绕点A在平面内自由旋转,若AD=1,AB=3,请直接写出△PMN的周长的最大值.
相关试卷
这是一份中考数学二轮精品专题复习 图形的旋转(解答题),共65页。试卷主要包含了综合与实践等内容,欢迎下载使用。
这是一份2023年 数学中考高频考点专题——图形的旋转(二),共7页。试卷主要包含了已知点A等内容,欢迎下载使用。
这是一份2022年人教版 中考数学第一轮复习专题集训 一元二次方程专题,共6页。试卷主要包含了我们规定等内容,欢迎下载使用。