|试卷下载
终身会员
搜索
    上传资料 赚现金
    重庆市江津区四校联盟2022年中考试题猜想数学试卷含解析
    立即下载
    加入资料篮
    重庆市江津区四校联盟2022年中考试题猜想数学试卷含解析01
    重庆市江津区四校联盟2022年中考试题猜想数学试卷含解析02
    重庆市江津区四校联盟2022年中考试题猜想数学试卷含解析03
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    重庆市江津区四校联盟2022年中考试题猜想数学试卷含解析

    展开
    这是一份重庆市江津区四校联盟2022年中考试题猜想数学试卷含解析,共21页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项:
    1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
    2.答题时请按要求用笔。
    3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
    4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
    5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.下列美丽的壮锦图案是中心对称图形的是(  )
    A. B. C. D.
    2.已知二次函数y=x2+bx﹣9图象上A、B两点关于原点对称,若经过A点的反比例函数的解析式是y=,则该二次函数的对称轴是直线(  )
    A.x=1 B.x= C.x=﹣1 D.x=﹣
    3.已知等腰三角形的两边长分别为5和6,则这个等腰三角形的周长为(  )
    A.11 B.16 C.17 D.16或17
    4.如图,一艘轮船位于灯塔P的北偏东60°方向,与灯塔P的距离为30海里的A处,轮船沿正南方向航行一段时间后,到达位于灯塔P的南偏东30°方向上的B处,则此时轮船所在位置B与灯塔P之间的距离为( )

    A.60海里 B.45海里 C.20海里 D.30海里
    5.某市2010年元旦这天的最高气温是8℃,最低气温是﹣2℃,则这天的最高气温比最低气温高(  )
    A.10℃ B.﹣10℃ C.6℃ D.﹣6℃
    6.如图,数轴上有M、N、P、Q四个点,其中点P所表示的数为a,则数-3a所对应的点可能是( )

    A.M B.N C.P D.Q
    7.如图,点P是菱形ABCD边上的一动点,它从点A出发沿在A→B→C→D路径匀速运动到点D,设△PAD的面积为y,P点的运动时间为x,则y关于x的函数图象大致为(  )

    A. B. C. D.
    8.某几何体的左视图如图所示,则该几何体不可能是(  )

    A. B. C. D.
    9.如图,CE,BF分别是△ABC的高线,连接EF,EF=6,BC=10,D、G分别是EF、BC的中点,则DG的长为 ( )

    A.6 B.5 C.4 D.3
    10.如图,矩形 ABCD 的边 AB=1,BE 平分∠ABC,交 AD 于点 E,若点 E 是 AD 的中点,以点 B 为圆心,BE 长为半径画弧,交 BC 于点 F,则图中阴影部分的面积是( )

    A.2- B. C.2- D.
    二、填空题(共7小题,每小题3分,满分21分)
    11.已知线段a=4,b=1,如果线段c是线段a、b的比例中项,那么c=_____.
    12.在某公益活动中,小明对本年级同学的捐款情况进行了统计,绘制成如图所示的不完整的统计图,其中捐10元的人数占年级总人数的25%,则本次捐款20元的人数为______ 人.

    13.如图,在矩形ABCD中,对角线AC、BD相交于点O,点E、F分别是AO、AD的中点,若AB=6cm,BC=8cm,则EF=_____cm.

    14.如图,在等腰△ABC中,AB=AC,BC边上的高AD=6cm,腰AB上的高CE=8cm,则BC=_____cm

    15.一元二次方程x2+mx+3=0的一个根为- 1,则另一个根为 .
    16.一组数据7,9,8,7,9,9,8的中位数是__________
    17.如图,△ABC中,∠A=80°,∠B=40°,BC的垂直平分线交AB于点D,联结DC.如果AD=2,BD=6,那么△ADC的周长为 .

    三、解答题(共7小题,满分69分)
    18.(10分)如图,AB是⊙O的直径,弦CD⊥AB,垂足为H,连结AC,过上一点E作EG∥AC交CD的延长线于点G,连结AE交CD于点F,且EG=FG,连结CE.
    (1)求证:∠G=∠CEF;
    (2)求证:EG是⊙O的切线;
    (3)延长AB交GE的延长线于点M,若tanG =,AH=3,求EM的值.

    19.(5分)在正方形 ABCD 中,M 是 BC 边上一点,且点 M 不与 B、C 重合,点 P 在射线 AM 上,将线段 AP 绕点 A 顺时针旋转 90°得到线段 AQ,连接BP,DQ.

    (1)依题意补全图 1;
    (2)①连接 DP,若点 P,Q,D 恰好在同一条直线上,求证:DP2+DQ2=2AB2;
    ②若点 P,Q,C 恰好在同一条直线上,则 BP 与 AB 的数量关系为: .
    20.(8分)某校为了开阔学生的视野,积极组织学生参加课外读书活动.“放飞梦想”读书小组协助老师随机抽取本校的部分学生,调查他们最喜爱的图书类别(图书分为文学类、艺体类、科普类、其他等四类),并将调查结果绘制成如下两幅不完整的统计图,请你结合图中的信息解答下列问题:求被调查的学生人数;补全条形统计图;已知该校有1200名学生,估计全校最喜爱文学类图书的学生有多少人?

    21.(10分)某学校要了解学生上学交通情况,选取七年级全体学生进行调查,根据调查结果,画出扇形统计图(如图),图中“公交车”对应的扇形圆心角为60°,“自行车”对应的扇形圆心角为120°,已知七年级乘公交车上学的人数为50人.
    (1)七年级学生中,骑自行车和乘公交车上学的学生人数哪个更多?多多少人?
    (2)如果全校有学生2400人,学校准备的600个自行车停车位是否足够?

    22.(10分)已知,抛物线L:y=x2+bx+c与x轴交于点A和点B(-3,0),与y轴交于点C(0,3).
    (1)求抛物线L的顶点坐标和A点坐标.
    (2)如何平移抛物线L得到抛物线L1,使得平移后的抛物线L1的顶点与抛物线L的顶点关于原点对称?
    (3)将抛物线L平移,使其经过点C得到抛物线L2,点P(m,n)(m>0)是抛物线L2上的一点,是否存在点P,使得△PAC为等腰直角三角形,若存在,请直接写出抛物线L2的表达式,若不存在,请说明理由.
    23.(12分)已知:如图,AB为⊙O的直径,AB=AC,BC交⊙O于点D,DE⊥AC于E.
    (1)求证:DE为⊙O的切线;
    (2)G是ED上一点,连接BE交圆于F,连接AF并延长交ED于G.若GE=2,AF=3,求EF的长.

    24.(14分)如图所示,在中,,用尺规在边BC上求作一点P,使;(不写作法,保留作图痕迹)连接AP当为多少度时,AP平分.




    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、A
    【解析】
    【分析】根据中心对称图形的定义逐项进行判断即可得.
    【详解】A、是中心对称图形,故此选项正确;
    B、不是中心对称图形,故此选项错误;
    C、不是中心对称图形,故此选项错误;
    D、不是中心对称图形,故此选项错误,
    故选A.
    【点睛】本题主要考查了中心对称图形,熟练掌握中心对称图形的定义是解题的关键;把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形.
    2、D
    【解析】
    设A点坐标为(a,),则可求得B点坐标,把两点坐标代入抛物线的解析式可得到关于a和b的方程组,可求得b的值,则可求得二次函数的对称轴.
    【详解】
    解:∵A在反比例函数图象上,∴可设A点坐标为(a,).
    ∵A、B两点关于原点对称,∴B点坐标为(﹣a,﹣).
    又∵A、B两点在二次函数图象上,∴代入二次函数解析式可得:,解得:或,∴二次函数对称轴为直线x=﹣.
    故选D.
    【点睛】
    本题主要考查二次函数的性质,待定系数法求二次函数解析式,根据条件先求得b的值是解题的关键,注意掌握关于原点对称的两点的坐标的关系.
    3、D
    【解析】
    试题分析:由等腰三角形的两边长分别是5和6,可以分情况讨论其边长为5,5,6或者5,6,6,均满足三角形两边之和大于第三边,两边之差小于第三边的条件,所以此等腰三角形的周长为5+5+6=16或5+6+6=17.
    故选项D正确.
    考点:三角形三边关系;分情况讨论的数学思想
    4、D
    【解析】
    根据题意得出:∠B=30°,AP=30海里,∠APB=90°,再利用勾股定理得出BP的长,求出答案.
    【详解】
    解:由题意可得:∠B=30°,AP=30海里,∠APB=90°,
    故AB=2AP=60(海里),
    则此时轮船所在位置B处与灯塔P之间的距离为:BP=(海里)
    故选:D.
    【点睛】
    此题主要考查了勾股定理的应用以及方向角,正确应用勾股定理是解题关键.
    5、A
    【解析】
    用最高气温减去最低气温,再根据有理数的减法运算法则“减去一个数等于加上这个数的相反数”即可求得答案.
    【详解】
    8-(-2)=8+2=10℃.
    即这天的最高气温比最低气温高10℃.
    故选A.
    6、A
    【解析】
    解:∵点P所表示的数为a,点P在数轴的右边,∴-3a一定在原点的左边,且到原点的距离是点P到原点距离的3倍,∴数-3a所对应的点可能是M,故选A.
    点睛:本题考查了数轴,解决本题的关键是判断-3a一定在原点的左边,且到原点的距离是点P到原点距离的3倍.
    7、B
    【解析】【分析】设菱形的高为h,即是一个定值,再分点P在AB上,在BC上和在CD上三种情况,利用三角形的面积公式列式求出相应的函数关系式,然后选择答案即可.
    【详解】分三种情况:
    ①当P在AB边上时,如图1,
    设菱形的高为h,
    y=AP•h,
    ∵AP随x的增大而增大,h不变,
    ∴y随x的增大而增大,
    故选项C不正确;
    ②当P在边BC上时,如图2,
    y=AD•h,
    AD和h都不变,
    ∴在这个过程中,y不变,
    故选项A不正确;
    ③当P在边CD上时,如图3,
    y=PD•h,
    ∵PD随x的增大而减小,h不变,
    ∴y随x的增大而减小,
    ∵P点从点A出发沿A→B→C→D路径匀速运动到点D,
    ∴P在三条线段上运动的时间相同,
    故选项D不正确,
    故选B.

    【点睛】本题考查了动点问题的函数图象,菱形的性质,根据点P的位置的不同,运用分类讨论思想,分三段求出△PAD的面积的表达式是解题的关键.
    8、D
    【解析】
    解:几何体的左视图是从左面看几何体所得到的图形,选项A、B、C的左视图均为从左往右正方形个数为2,1,符合题意,选项D的左视图从左往右正方形个数为2,1,1,
    故选D.
    【点睛】
    本题考查几何体的三视图.
    9、C
    【解析】
    连接EG、FG,根据斜边中线长为斜边一半的性质即可求得EG=FG=BC,因为D是EF中点,根据等腰三角形三线合一的性质可得GD⊥EF,再根据勾股定理即可得出答案.
    【详解】
    解:连接EG、FG,

    EG、FG分别为直角△BCE、直角△BCF的斜边中线,
    ∵直角三角形斜边中线长等于斜边长的一半
    ∴EG=FG=BC=×10=5,
    ∵D为EF中点
    ∴GD⊥EF,
    即∠EDG=90°,
    又∵D是EF的中点,
    ∴,
    在中,
    ,
    故选C.
    【点睛】
    本题考查了直角三角形中斜边 上中线等于斜边的一半的性质、勾股定理以及等腰三角形三线合一的性质,本题中根据等腰三角形三线合一的性质求得GD⊥EF是解题的关键.
    10、B
    【解析】
    利用矩形的性质以及结合角平分线的性质分别求出AE,BE的长以及∠EBF的度数,进而利用图中阴影部分的面积=S-S-S,求出答案.
    【详解】
    ∵矩形ABCD的边AB=1,BE平分∠ABC,
    ∴∠ABE=∠EBF=45°,AD∥BC,
    ∴∠AEB=∠CBE=45°,
    ∴AB=AE=1,BE= ,
    ∵点E是AD的中点,
    ∴AE=ED=1,
    ∴图中阴影部分的面积=S −S −S =1×2− ×1×1−
    故选B.
    【点睛】
    此题考查矩形的性质,扇形面积的计算,解题关键在于掌握运算公式

    二、填空题(共7小题,每小题3分,满分21分)
    11、1
    【解析】
    根据比例中项的定义,列出比例式即可得出中项,注意线段不能为负.
    【详解】
    根据比例中项的概念结合比例的基本性质,得:比例中项的平方等于两条线段的乘积.
    则c1=4×1,c=±1,(线段是正数,负值舍去),
    故c=1.
    故答案为1.
    【点睛】
    本题考查了比例线段;理解比例中项的概念,这里注意线段不能是负数.
    12、35
    【解析】
    分析:根据捐款10元的人数占总人数25%可得捐款总人数,将总人数减去其余各组人数可得答案.
    详解:根据题意可知,本年级捐款捐款的同学一共有20÷25%=80(人),
    则本次捐款20元的有:80−(20+10+15)=35(人),
    故答案为:35.
    点睛:本题考查了条形统计图.计算出捐款总人数是解决问题的关键.
    13、2.1
    【解析】
    根据勾股定理求出AC,根据矩形性质得出∠ABC=90°,BD=AC,BO=OD,求出BD、OD,根据三角形中位线求出即可.
    【详解】
    ∵四边形ABCD是矩形,
    ∴∠ABC=90°,BD=AC,BO=OD,
    ∵AB=6cm,BC=8cm,
    ∴由勾股定理得:BD=AC==10(cm),
    ∴DO=1cm,
    ∵点E、F分别是AO、AD的中点,
    ∴EF=OD=2.1cm,
    故答案为2.1.
    【点评】
    本题考查了勾股定理,矩形性质,三角形中位线的应用,熟练掌握相关性质及定理是解题的关键.
    14、
    【解析】
    根据三角形的面积公式求出=,根据等腰三角形的性质得到BD=DC=BC,根据勾股定理列式计算即可.
    【详解】
    ∵AD是BC边上的高,CE是AB边上的高,
    ∴AB•CE=BC•AD,
    ∵AD=6,CE=8,
    ∴=,
    ∴=,
    ∵AB=AC,AD⊥BC,
    ∴BD=DC=BC,
    ∵AB2−BD2=AD2,
    ∴AB2=BC2+36,即BC2=BC2+36,
    解得:BC=.
    故答案为:.
    【点睛】
    本题考查的是等腰三角形的性质、勾股定理的应用和三角形面积公式的应用,根据三角形的面积公式求出腰与底的比是解题的关
    15、-1.
    【解析】
    因为一元二次方程的常数项是已知的,可直接利用两根之积的等式求解.
    【详解】
    ∵一元二次方程x2+mx+1=0的一个根为-1,设另一根为x1,
    由根与系数关系:-1•x1=1,
    解得x1=-1.
    故答案为-1.
    16、1
    【解析】
    将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数,据此可得.
    【详解】
    解:将数据重新排列为7、7、1、1、9、9、9,
    所以这组数据的中位数为1,
    故答案为1.
    【点睛】
    本题主要考查中位数,解题的关键是掌握中位数的定义.
    17、1.
    【解析】
    试题分析:由BC的垂直平分线交AB于点D,可得CD=BD=6,又由等边对等角,可求得∠BCD的度数,继而求得∠ADC的度数,则可判定△ACD是等腰三角形,继而求得答案.
    试题解析:∵BC的垂直平分线交AB于点D,
    ∴CD=BD=6,
    ∴∠DCB=∠B=40°,
    ∴∠ADC=∠B+∠BCD=80°,
    ∴∠ADC=∠A=80°,
    ∴AC=CD=6,
    ∴△ADC的周长为:AD+DC+AC=2+6+6=1.
    考点:1.线段垂直平分线的性质;2.等腰三角形的判定与性质.

    三、解答题(共7小题,满分69分)
    18、(1)证明见解析;(2)证明见解析;(3).
    【解析】
    试题分析:(1)由AC∥EG,推出∠G=∠ACG,由AB⊥CD推出,推出∠CEF=∠ACD,推出∠G=∠CEF,由此即可证明;
    (2)欲证明EG是⊙O的切线只要证明EG⊥OE即可;
    (3)连接OC.设⊙O的半径为r.在Rt△OCH中,利用勾股定理求出r,证明△AHC∽△MEO,可得,由此即可解决问题;
    试题解析:(1)证明:如图1.∵AC∥EG,∴∠G=∠ACG,∵AB⊥CD,∴,∴∠CEF=∠ACD,∴∠G=∠CEF,∵∠ECF=∠ECG,∴△ECF∽△GCE.

    (2)证明:如图2中,连接OE.∵GF=GE,∴∠GFE=∠GEF=∠AFH,∵OA=OE,∴∠OAE=∠OEA,∵∠AFH+∠FAH=90°,∴∠GEF+∠AEO=90°,∴∠GEO=90°,∴GE⊥OE,∴EG是⊙O的切线.

    (3)解:如图3中,连接OC.设⊙O的半径为r.

    在Rt△AHC中,tan∠ACH=tan∠G==,∵AH=,∴HC=,在Rt△HOC中,∵OC=r,OH=r﹣,HC=,∴,∴r=,∵GM∥AC,∴∠CAH=∠M,∵∠OEM=∠AHC,∴△AHC∽△MEO,∴,∴,∴EM=.
    点睛:本题考查圆综合题、垂径定理、相似三角形的判定和性质、锐角三角函数、勾股定理等知识,解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题,正确寻找相似三角形,构建方程解决问题吗,属于中考压轴题.
    19、(1)详见解析;(1)①详见解析;②BP=AB.
    【解析】
    (1)根据要求画出图形即可;
    (1)①连接BD,如图1,只要证明△ADQ≌△ABP,∠DPB=90°即可解决问题;
    ②结论:BP=AB,如图3中,连接AC,延长CD到N,使得DN=CD,连接AN,QN.由△ADQ≌△ABP,△ANQ≌△ACP,推出DQ=PB,∠AQN=∠APC=45°,由∠AQP=45°,推出∠NQC=90°,由CD=DN,可得DQ=CD=DN=AB;
    【详解】
    (1)解:补全图形如图 1:

    (1)①证明:连接 BD,如图 1,

    ∵线段 AP 绕点 A 顺时针旋转 90°得到线段 AQ,
    ∴AQ=AP,∠QAP=90°,
    ∵四边形 ABCD 是正方形,
    ∴AD=AB,∠DAB=90°,
    ∴∠1=∠1.
    ∴△ADQ≌△ABP,
    ∴DQ=BP,∠Q=∠3,
    ∵在 Rt△QAP 中,∠Q+∠QPA=90°,
    ∴∠BPD=∠3+∠QPA=90°,
    ∵在 Rt△BPD 中,DP1+BP1=BD1, 又∵DQ=BP,BD1=1AB1,
    ∴DP1+DQ1=1AB1.
    ②解:结论:BP=AB.
    理由:如图 3 中,连接 AC,延长 CD 到 N,使得 DN=CD,连接 AN,QN.

    ∵△ADQ≌△ABP,△ANQ≌△ACP,
    ∴DQ=PB,∠AQN=∠APC=45°,
    ∵∠AQP=45°,
    ∴∠NQC=90°,
    ∵CD=DN,
    ∴DQ=CD=DN=AB,
    ∴PB=AB.
    【点睛】
    本题考查正方形的性质,旋转变换、勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴
    20、(4)60;(4)作图见试题解析;(4)4.
    【解析】
    试题分析:(4)利用科普类的人数以及所占百分比,即可求出被调查的学生人数;
    (4)利用(4)中所求得出喜欢艺体类的学生数进而画出图形即可;
    (4)首先求出样本中喜爱文学类图书所占百分比,进而估计全校最喜爱文学类图书的学生数.
    试题解析:(4)被调查的学生人数为:44÷40%=60(人);
    (4)喜欢艺体类的学生数为:60-44-44-46=8(人),
    如图所示:

    全校最喜爱文学类图书的学生约有:4400×=4(人).
    考点:4.条形统计图;4.用样本估计总体;4.扇形统计图.
    21、(1)骑自行车的人数多,多50人;(2)学校准备的600个自行车停车位不足够,理由见解析
    【解析】
    分析: (1)根据乘公交车的人数除以乘公交车的人数所占的比例,可得调查的样本容量,根据样本容量乘以自行车所占的百分比,可得骑自行车的人数,根据有理数的减法,可得答案;
    (2)根据学校总人数乘以骑自行车所占的百分比,可得答案.
    详解:
    (1)乘公交车所占的百分比=,
    调查的样本容量50÷=300人,
    骑自行车的人数300×=100人,
    骑自行车的人数多,多100﹣50=50人;
    (2)全校骑自行车的人数2400×=800人,
    800>600,
    故学校准备的600个自行车停车位不足够.
    点睛: 本题考查了扇形统计图,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.
    22、(1)顶点(-2,-1) A (-1,0); (2)y=(x-2)2+1; (3) y=x2-x+3, ,y=x2-4x+3, .
    【解析】
    (1)将点B和点C代入求出抛物线L即可求解.
    (2)将抛物线L化顶点式求出顶点再根据关于原点对称求出即可求解.
    (3)将使得△PAC为等腰直角三角形,作出所有点P的可能性,求出代入即可求解.
    【详解】
    (1)将点B(-3,0),C(0,3)代入抛物线得:
    ,解得,则抛物线.
    抛物线与x轴交于点A,
    ,,A (-1,0),
    抛物线L化顶点式可得,由此可得顶点坐标顶点(-2,-1).
    (2)抛物线L化顶点式可得,由此可得顶点坐标顶点(-2,-1)
    抛物线L1的顶点与抛物线L的顶点关于原点对称,
    对称顶点坐标为(2,1),
    即将抛物线向右移4个单位,向上移2个单位.
    (3) 使得△PAC为等腰直角三角形,作出所有点P的可能性.

    是等腰直角三角形
    ,
    ,
    ,
    ,
    ,
    求得.,
    同理得,,,
    由题意知抛物线并将点代入得:.
    【点睛】
    本题主要考查抛物线综合题,讨论出P点的所有可能性是解题关键.
    23、(1)见解析;(2)∠EAF的度数为30°
    【解析】
    (1)连接OD,如图,先证明OD∥AC,再利用DE⊥AC得到OD⊥DE,然后根据切线的判定定理得到结论;
    (2)利用圆周角定理得到∠AFB=90°,再证明Rt△GEF∽△Rt△GAE,利用相似比得到 于是可求出GF=1,然后在Rt△AEG中利用正弦定义求出∠EAF的度数即可.
    【详解】
    (1)证明:连接OD,如图,
    ∵OB=OD,
    ∴∠OBD=∠ODB,
    ∵AB=AC,
    ∴∠ABC=∠C,
    ∴∠ODB=∠C,
    ∴OD∥AC,
    ∵DE⊥AC,
    ∴OD⊥DE,
    ∴DE为⊙O的切线;
    (2)解:∵AB为直径,
    ∴∠AFB=90°,
    ∵∠EGF=∠AGF,
    ∴Rt△GEF∽△Rt△GAE,
    ∴,即
    整理得GF2+3GF﹣4=0,解得GF=1或GF=﹣4(舍去),
    在Rt△AEG中,sin∠EAG
    ∴∠EAG=30°,
    即∠EAF的度数为30°.

    【点睛】
    本题考查了切线的性质:经过半径的外端且垂直于这条半径的直线是圆的切线;圆的切线垂直于经过切点的半径.判定切线时“连圆心和直线与圆的公共点”或“过圆心作这条直线的垂线”;有切线时,常常“遇到切点连圆心得半径”.也考查了圆周角定理.
    24、(1)详见解析;(2)30°.
    【解析】
    (1)根据线段垂直平分线的作法作出AB的垂直平分线即可;
    (2)连接PA,根据等腰三角形的性质可得,由角平分线的定义可得,根据直角三角形两锐角互余的性质即可得∠B的度数,可得答案.
    【详解】
    (1)如图所示:分别以A、B为圆心,大于AB长为半径画弧,两弧相交于点E、F,作直线EF,交BC于点P,
    ∵EF为AB的垂直平分线,
    ∴PA=PB,
    ∴点P即为所求.

    (2)如图,连接AP,
    ∵,
    ∴,
    ∵AP是角平分线,
    ∴,
    ∴,
    ∵,
    ∴∠PAC+∠PAB+∠B=90°,
    ∴3∠B=90°,
    解得:∠B=30°,
    ∴当时,AP平分.

    【点睛】
    本题考查尺规作图,考查了垂直平分线的性质、直角三角形两锐角互余的性质及等腰三角形的性质,线段垂直平分线上的点到线段两端的距离相等;熟练掌握垂直平分线的性质是解题关键.

    相关试卷

    2022-2023学年重庆市江津区12校联盟学校八年级(下)期中数学试卷(含解析): 这是一份2022-2023学年重庆市江津区12校联盟学校八年级(下)期中数学试卷(含解析),共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2022-2023学年重庆市江津区12校联盟学校七年级(上)期中数学试卷(含解析): 这是一份2022-2023学年重庆市江津区12校联盟学校七年级(上)期中数学试卷(含解析),共14页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    四川省达州达川区四校联考2021-2022学年中考试题猜想数学试卷含解析: 这是一份四川省达州达川区四校联考2021-2022学年中考试题猜想数学试卷含解析,共17页。试卷主要包含了考生必须保证答题卡的整洁,下列说法正确的是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map