陕西省榆林市米脂县2021-2022学年七年级上学期期末素质教育质量抽测数学试题(含答案)
展开七年级素质教育质量抽测试题
数学
注意事项:
1.本试卷分为第一部分(选择题)和第二部分(非选择题)。全卷共4页,总分120分。考试时间120分钟。
2.领到试卷和答题卡后,请用0.5毫米黑色墨水签字笔,分别在试卷和答题卡上填写姓名和准考证号。
3.请在答题卡上各题的指定区域内作答,否则作答无效。
4.作图时,先用铅笔作图,再用规定签字笔描黑。
5.考试结束,本试卷和答题卡一并交回。
第一部分(选择题 共24分)
一、选择题(共8小题,每小题3分,计24分.每小题只有一个选项是符合题意的)
1.太阳是位于太阳系中心的恒星,太阳中心的温度可达,将数据20000000用科学记数法表示为( )
A. B. C. D.
2.下列调查中,适合采用普查方式的是( )
A.了解我市中学生的睡眠情况
B.调查黄河水中的泥沙含量
C.调查全国中学生的视力和用眼卫生情况
D.检查我国“神州十二号载人飞船”各零部件的情况
3.下列各数中,倒数最大的是( )
A. B. C.1 D.2
4.方程中被阴影盖住了一个数,已知方程的解是,则被盖住的这个数是( )
A. B.10 C. D.4
5.下列说法中,正确的是( )
A.数轴上表示到和5的距离相等的数是3
B.把用度、分、秒表示
C.用一个平面去截圆锥,所得的截面不可能是三角形
D.将一根细木条固定在墙上,至少需要两个钉子,用“两点确定一条直线”来解释
6.某班对学生的一次数学测试成绩(得分取整数)进行整理后分成五组,并绘制出如图所示的频数分布直方图,则下列说法中错误的是( )
A.这次共有48人参加测试 B.这次成绩为100分的有6人
C.测试成绩高于70.5分且低于80.5分的人数最多
D.若成绩在80分以上为优秀,则成绩为优秀的有15人
7.《算法统宗》是我国古代数学著作,其中记载了一道数学问题大意如下:用绳子量井深,把绳三折来量,井外余绳四尺,把绳四折来量,井外余绳一尺,井深几尺?设井深为x尺,则可列方程为( )
A. B.
C. D.
8.观察如图的规律,第(1)个图形中有5个小圆圈,第(2)个图形中有8个小圆圈,第(3)个图形中有11个小圆圈,若第(n)个图形中有1109个小圆圈,则n的值为( )
A.365 B.367 C.369 D.371
第二部分(非选择题 共96分)
二、填空题(共5小题,每小题3分,计15分)
9.已知x的相反数是,则的值为____________.
10.从六边形的一个顶点出发,分别连接这个点与其余各顶点,可以把这个六边形分割成____________个三角形.
11.某网上书店m本书的价格合计为100元,且每本书需另加邮费0.6元,则小强买这m本书所需的总费用为____________元.(用含m的代数式表示)
12.如图,甲从点A出发向北偏东方向走到点B,乙从点A出发向南偏西方向走到点C,则的度数是____________.
13.一辆汽车从甲地开往乙地需要5小时,返回时每小时少行驶15千米,多用了1小时,则甲、乙两地间的距离是____________千米.
三、解答题(共13小题,计81分.解答应写出过程)
14.(5分)计算:.
15.(5分)尺规作图:已知点A、B和线段a、b,连接,在上求作线段.(不写作法,保留作图痕迹)
16.(5分)已知单项式与是同类项,多项式是五次三项式,求的值.
17.(5分)如图所示,要使图中平面展开图折叠成正方体后,相对面上的两个数之和相等,求的值.
18.(5分)已知是关于x的一元一次方程,求这个方程的解.
19.(5分)先化简,再求值:,其中.
20.(5分)如图,,点C是线段的中点,点D是线段的中点,求的长.
21.(6分)如图是用7个完全相同的小正方体搭成的几何体,请分别画出从正面、左面和上面看得到的形状图.
22.(7分)某超市现有20筐白菜,以每筐18千克为标准,超过或不足18千克的部分分别用正、负数表示,记录如下:
与标准质量的差值(单位:千克) | 0 | 1 | 2.5 | |||
筐数 | 2 | 4 | 2 | 1 | 3 | 8 |
(1)与标准质量比较,这20筐白菜总计超过或不足多少千克?
(2)该超市参与“送温暖惠民工程”,白菜平均每千克售价1.8元,则售完这20筐白菜可卖多少元?
23.(7分)某校准备在网上订购一批某品牌足球和跳绳,在查阅某网购平台后发现足球每个定价150元,跳绳每根定价30元.现有A、B两家网店均提供包邮服务,并提出了各自的优惠方案.
A网店:买一个足球送一根跳绳:B网店:足球和跳绳都按定价的90%付款.
已知该校要购买足球50个,跳绳x根().
(1)在A网店购买足球和跳绳所需费用为____________元,在B网店购买足球和跳绳所需费用为____________元;(用含x的代数式表示)
(2)当时,且只选择其中一家网店购买,通过计算说明此时在哪家网店购买较为合算?
24.(8分)学校随机抽取部分学生就“你是否喜欢网课”进行问卷调查,并将调查结果进行统计后,绘制成如下的统计表和扇形统计图.
态度 | 非常喜欢 | 喜欢 | 一般 | 不喜欢 |
人数 | 90 | b | 30 | 10 |
百分比 | a | 35% | 20% |
请你根据统计图表提供的信息解答下列问题:
(1)该校随机抽取了____________名同学进行问卷调查;
(2)求出a、b的值;
(3)求在扇形统计图中“喜欢”部分扇形所对应的圆心角的度数.
25.(8分)如图,已知,是内的一条射线,且.
(1)求和的度数;
(2)作射线平分,在内作射线,使得,求的度数.
26.(10分)希望书店开展优惠售书活动,一次性购书的定价总额在300元以内的打九折;一次性购书的定价总额超过300元的,其中300元按九折计算,超过300元的部分打八折.
(1)若小华在希望书店购书实际支付了243元,求小华购书的定价总额是多少元?
(2)小刚和小强也在该书店购书,两人选好书后,小强对小刚说:“我们独自付款,都只能享受九折,合在一起付款,按今天的活动一共可以比定价优惠78元.”已知小刚购书的定价总额是260元,求小强购书的定价总额是多少元?
七年级素质教育质量抽测试题
数学参考答案及评分标准
一、选择题(共8小题,每小题3分,计24分.每小题只有一个选项是符合题意的)
1.C 2.D 3.A 4.B 5.D 6.B 7.A 8.C
二、填空题(共5小题,每小题3分,计15分)
9. 10.4 11. 12.136 13.450
三、解答题(共13小题,计81分.解答应写出过程)
14.解:原式
.
15.解:如图所示,即为所求.
16.解:因为单项式与是同类项,
所以.
因为多项式是五次三项式,
所以,
所以,
所以.
17.解:由展开图可知“a”与“b”是对面,“6”与“c”是对面,“”与“3”是对面.
因为相对面上两个数之和相等,
所以,
所以,
所以.
18.解:因为是关于x的一元一次方程,
所以,
解得,
所以原方程为,
移项、合并同类项,得.
系数化为1,得.
19.解:原式
,
当时,
原式.
20.解:因为,点C是线段的中点,
所以.
因为点D是线段的中点,
所以,
所以.
21.解:如图所示.
22.解:(1)
(千克),
所以这20筐白菜总计超过5千克.
(2)
(元),
所以售完这20筐白菜可卖657元.
23.解:(1);
.
(2)当时,(元),
(元).
因为,
所以当时,选择在A网店购买较为合算.
24.解:(1)200.
(2),
(名).
(3)“喜欢”部分扇形所对应的圆心角为:.
25.解:(1)因为,
所以.
(2)因为平分,
所以.
因为∠,
所以,
所以.
26.解:(1)由题意可得小华这次购书的定价总额在300元以内,
设小华购书的定价总额是x元,
根据题意,得,
解得.
答:小华购书的定价总额是270元.
(2)设小强购书的定价总额是y元,
根据题意,得,
解得.
答:小强购书的定价总额是280元.
2023-2024学年陕西省榆林市米脂县数学九上期末学业质量监测模拟试题含答案: 这是一份2023-2024学年陕西省榆林市米脂县数学九上期末学业质量监测模拟试题含答案,共8页。试卷主要包含了答题时请按要求用笔,下列事件是必然事件的是等内容,欢迎下载使用。
2022-2023学年陕西省榆林市米脂县七年级数学第二学期期末质量跟踪监视试题含答案: 这是一份2022-2023学年陕西省榆林市米脂县七年级数学第二学期期末质量跟踪监视试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,下列图形是中心对称图形的是等内容,欢迎下载使用。
陕西省榆林市米脂县2021-2022学年七年级上学期期末素质教育质量抽测数学试题: 这是一份陕西省榆林市米脂县2021-2022学年七年级上学期期末素质教育质量抽测数学试题,共7页。