|试卷下载
终身会员
搜索
    上传资料 赚现金
    重庆綦江长寿巴南三校联盟市级名校2022年中考联考数学试卷含解析
    立即下载
    加入资料篮
    重庆綦江长寿巴南三校联盟市级名校2022年中考联考数学试卷含解析01
    重庆綦江长寿巴南三校联盟市级名校2022年中考联考数学试卷含解析02
    重庆綦江长寿巴南三校联盟市级名校2022年中考联考数学试卷含解析03
    还剩23页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    重庆綦江长寿巴南三校联盟市级名校2022年中考联考数学试卷含解析

    展开
    这是一份重庆綦江长寿巴南三校联盟市级名校2022年中考联考数学试卷含解析,共26页。试卷主要包含了考生必须保证答题卡的整洁,已知二次函数y=3,的相反数是,二次函数y=﹣等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    考生请注意:
    1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
    2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
    3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.如图所示,在△ABC中,∠C=90°,AC=4,BC=3,将△ABC绕点A逆时针旋转,使点C落在线段AB上的点E处,点B落在点D处,则BD两点间的距离为( )

    A.2 B. C. D.
    2.在△ABC中,∠C=90°,,那么∠B的度数为( )
    A.60° B.45° C.30° D.30°或60°
    3.如果一组数据6,7,x,9,5的平均数是2x,那么这组数据的中位数为( )
    A.5 B.6 C.7 D.9
    4.已知二次函数y=3(x﹣1)2+k的图象上有三点A(,y1),B(2,y2),C(﹣,y3),则y1、y2、y3的大小关系为(  )
    A.y1>y2>y3 B.y2>y1>y3 C.y3>y1>y2 D.y3>y2>y1
    5.如图,矩形ABCD的边长AD=3,AB=2,E为AB的中点,F在边BC上,且BF=2FC,AF分别与DE、DB相交于点M,N,则MN的长为( )

    A. B. C. D.
    6.函数与在同一坐标系中的大致图象是( )
    A、  B、 C、 D、
    7.如图,一次函数和反比例函数的图象相交于,两点,则使成立的取值范围是(  )

    A.或 B.或
    C.或 D.或
    8.若二次函数的图像与轴有两个交点,则实数的取值范围是( )
    A. B. C. D.
    9.的相反数是 ( )
    A.6 B.-6 C. D.
    10.二次函数y=﹣(x+2)2﹣1的图象的对称轴是(  )
    A.直线x=1 B.直线x=﹣1 C.直线x=2 D.直线x=﹣2
    11.向某一容器中注水,注满为止,表示注水量与水深的函数关系的图象大致如图所示,则该容器可能是(  )

    A. B.
    C. D.
    12.甲、乙两人加工一批零件,甲完成240个零件与乙完成200个零件所用的时间相同,已知甲比乙每天多完成8个零件.设乙每天完成x个零件,依题意下面所列方程正确的是(  )
    A. B.
    C. D.
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.如图,AB∥CD,点E是CD上一点,∠AEC=40°,EF平分∠AED交AB于点F,则∠AFE=___度.

    14.如图,点O是矩形纸片ABCD的对称中心,E是BC上一点,将纸片沿AE折叠后,点B恰好与点O重合.若BE=3,则折痕AE的长为____.

    15.为迎接五月份全县中考九年级体育测试,小强每天坚持引体向上锻炼,他记录了某一周每天做引体向上的个数,如下表:

    其中有三天的个数被墨汁覆盖了,但小强已经计算出这组数据唯一众数是13,平均数是12,那么这组数据的方差是_____.
    16.不等式组的解集是_____.
    17.如图,AC是以AB为直径的⊙O的弦,点D是⊙O上的一点,过点D作⊙O的切线交直线AC于点E,AD平分∠BAE,若AB=10,DE=3,则AE的长为_____.

    18.一个多边形的每个内角都等于150°,则这个多边形是_____边形.
    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)已知抛物线y=ax2+bx+2过点A(5,0)和点B(﹣3,﹣4),与y轴交于点C.
    (1)求抛物线y=ax2+bx+2的函数表达式;
    (2)求直线BC的函数表达式;
    (3)点E是点B关于y轴的对称点,连接AE、BE,点P是折线EB﹣BC上的一个动点,
    ①当点P在线段BC上时,连接EP,若EP⊥BC,请直接写出线段BP与线段AE的关系;
    ②过点P作x轴的垂线与过点C作的y轴的垂线交于点M,当点M不与点C重合时,点M关于直线PC的对称点为点M′,如果点M′恰好在坐标轴上,请直接写出此时点P的坐标.

    20.(6分)△ABC中,AB=AC,D为BC的中点,以D为顶点作∠MDN=∠B.
    如图(1)当射线DN经过点A时,DM交AC边于点E,不添加辅助线,写出图中所有与△ADE相似的三角形.如图(2),将∠MDN绕点D沿逆时针方向旋转,DM,DN分别交线段AC,AB于E,F点(点E与点A不重合),不添加辅助线,写出图中所有的相似三角形,并证明你的结论.在图(2)中,若AB=AC=10,BC=12,当△DEF的面积等于△ABC的面积的时,求线段EF的长.
    21.(6分)今年5月,某大型商业集团随机抽取所属的m家商业连锁店进行评估,将各连锁店按照评估成绩分成了A、B、C、D四个等级,绘制了如图尚不完整的统计图表.
    评估成绩n(分)

    评定等级

    频数

    90≤n≤100

    A

    2

    80≤n<90

    B



    70≤n<80

    C

    15

    n<70

    D

    6

    根据以上信息解答下列问题:
    (1)求m的值;
    (2)在扇形统计图中,求B等级所在扇形的圆心角的大小;(结果用度、分、秒表示)
    (3)从评估成绩不少于80分的连锁店中任选2家介绍营销经验,求其中至少有一家是A等级的概率.

    22.(8分)如图,抛物线y=﹣x2+bx+c与x轴交于点A和点B(3,0),与y轴交于点C(0,3),点D是抛物线的顶点,过点D作x轴的垂线,垂足为E,连接DB.
    (1)求此抛物线的解析式及顶点D的坐标;
    (2)点M是抛物线上的动点,设点M的横坐标为m.
    ①当∠MBA=∠BDE时,求点M的坐标;
    ②过点M作MN∥x轴,与抛物线交于点N,P为x轴上一点,连接PM,PN,将△PMN沿着MN翻折,得△QMN,若四边形MPNQ恰好为正方形,直接写出m的值.

    23.(8分)小华想复习分式方程,由于印刷问题,有一个数“?”看不清楚:.她把这个数“?”猜成5,请你帮小华解这个分式方程;小华的妈妈说:“我看到标准答案是:方程的增根是,原分式方程无解”,请你求出原分式方程中“?”代表的数是多少?
    24.(10分)如图,抛物线y=x2+bx+c与x轴交于A、B两点,与y轴交于点C,其对称轴交抛物线于点D,交x轴于点E,已知OB=OC=1.
    (1)求抛物线的解析式及点D的坐标;
    (2)连接BD,F为抛物线上一动点,当∠FAB=∠EDB时,求点F的坐标;
    (3)平行于x轴的直线交抛物线于M、N两点,以线段MN为对角线作菱形MPNQ,当点P在x轴上,且PQ=MN时,求菱形对角线MN的长.

    25.(10分)已知关于x的一元二次方程为常数.
    求证:不论m为何值,该方程总有两个不相等的实数根;
    若该方程一个根为5,求m的值.
    26.(12分)由甲、乙两个工程队承包某校校园的绿化工程,甲、乙两队单独完成这项工作所需的时间比是3∶2,两队共同施工6天可以完成.
    (1)求两队单独完成此项工程各需多少天?
    (2)此项工程由甲、乙两队共同施工6天完成任务后,学校付给他们4000元报酬,若按各自完成的工程量分配这笔钱,问甲、乙两队各应得到多少元?
    27.(12分)某地一路段修建,甲队单独完成这项工程需要60天,若由甲队先做5天,再由甲、乙两队合作9天,共完成这项工程的三分之一.
    (1)求甲、乙两队合作完成这项工程需要多少天?
    (2)若甲队的工作效率提高20%,乙队工作效率提高50%,甲队施工1天需付工程款4万元,乙队施工一天需付工程款2.5万元,现由甲乙两队合作若干天后,再由乙队完成剩余部分,在完成此项工程的工程款不超过190万元的条件下要求尽早完成此项工程,则甲、乙两队至多要合作多少天?



    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、C
    【解析】
    解:连接BD.在△ABC中,∵∠C=90°,AC=4,BC=3,∴AB=2.∵将△ABC绕点A逆时针旋转,使点C落在线段AB上的点E处,点B落在点D处,∴AE=4,DE=3,∴BE=2.在Rt△BED中,BD=.故选C.

    点睛:本题考查了勾股定理和旋转的基本性质,解决此类问题的关键是掌握旋转的基本性质,特别是线段之间的关系.题目整体较为简单,适合随堂训练.
    2、C
    【解析】
    根据特殊角的三角函数值可知∠A=60°,再根据直角三角形中两锐角互余求出∠B的值即可.
    【详解】
    解:∵,
    ∴∠A=60°.
    ∵∠C=90°,
    ∴∠B=90°-60°=30°.
    点睛:本题考查了特殊角的三角函数值和直角三角形中两锐角互余的性质,熟记特殊角的三角函数值是解答本题的突破点.
    3、B
    【解析】
    直接利用平均数的求法进而得出x的值,再利用中位数的定义求出答案.
    【详解】
    ∵一组数据1,7,x,9,5的平均数是2x,
    ∴,
    解得:,
    则从大到小排列为:3,5,1,7,9,
    故这组数据的中位数为:1.
    故选B.
    【点睛】
    此题主要考查了中位数以及平均数,正确得出x的值是解题关键.
    4、D
    【解析】
    试题分析:根据二次函数的解析式y=3(x-1)2+k,可知函数的开口向上,对称轴为x=1,根据函数图像的对称性,可得这三点的函数值的大小为y3>y2>y1.
    故选D
    点睛:此题主要考查了二次函数的图像与性质,解题时先根据顶点式求出开口方向,和对称轴,然后根据函数的增减性比较即可,这是中考常考题,难度有点偏大,注意结合图形判断验证.
    5、B
    【解析】
    过F作FH⊥AD于H,交ED于O,于是得到FH=AB=1,根据勾股定理得到AF===,根据平行线分线段成比例定理得到,OH=AE=,由相似三角形的性质得到=,求得AM=AF=,根据相似三角形的性质得到=,求得AN=AF=,即可得到结论.
    【详解】
    过F作FH⊥AD于H,交ED于O,则FH=AB=1.
    ∵BF=1FC,BC=AD=3,
    ∴BF=AH=1,FC=HD=1,
    ∴AF===,
    ∵OH∥AE,
    ∴=,
    ∴OH=AE=,
    ∴OF=FH﹣OH=1﹣=,
    ∵AE∥FO,∴△AME∽△FMO,
    ∴=,∴AM=AF=,
    ∵AD∥BF,∴△AND∽△FNB,
    ∴=,
    ∴AN=AF=,
    ∴MN=AN﹣AM=﹣=,故选B.

    【点睛】
    构造相似三角形是本题的关键,且求长度问题一般需用到勾股定理来解决,常作垂线
    6、D.
    【解析】
    试题分析:根据一次函数和反比例函数的性质,分k>0和k<0两种情况讨论:
    当k<0时,一次函数图象过二、四、三象限,反比例函数中,-k>0,图象分布在一、三象限;
    当k>0时,一次函数过一、三、四象限,反比例函数中,-k<0,图象分布在二、四象限.
    故选D.
    考点:一次函数和反比例函数的图象.
    7、B
    【解析】
    根据图象找出一次函数图象在反比例函数图象上方时对应的自变量的取值范围即可.
    【详解】
    观察函数图象可发现:或时,一次函数图象在反比例函数图象上方,
    ∴使成立的取值范围是或,
    故选B.
    【点睛】
    本题考查了反比例函数与一次函数综合,函数与不等式,利用数形结合思想是解题的关键.
    8、D
    【解析】
    由抛物线与x轴有两个交点可得出△=b2-4ac>0,进而可得出关于m的一元一次不等式,解之即可得出m的取值范围.
    【详解】
    ∵抛物线y=x2-2x+m与x轴有两个交点,
    ∴△=b2-4ac=(-2)2-4×1×m>0,即4-4m>0,
    解得:m<1.
    故选D.
    【点睛】
    本题考查了抛物线与x轴的交点,牢记“当△=b2-4ac>0时,抛物线与x轴有2个交点”是解题的关键.
    9、D
    【解析】
    根据相反数的定义解答即可.
    【详解】
    根据相反数的定义有:的相反数是.
    故选D.
    【点睛】
    本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,1的相反数是1.
    10、D
    【解析】
    根据二次函数顶点式的性质解答即可.
    【详解】
    ∵y=﹣(x+2)2﹣1是顶点式,
    ∴对称轴是:x=-2,
    故选D.
    【点睛】
    本题考查二次函数顶点式y=a(x-h)2+k的性质,对称轴为x=h,顶点坐标为(h,k)熟练掌握顶点式的性质是解题关键.
    11、D
    【解析】
    根据函数的图象和所给出的图形分别对每一项进行判断即可.
    【详解】
    由函数图象知: 随高度h的增加, y也增加,但随h变大, 每单位高度的增加, 注水量h的增加量变小, 图象上升趋势变缓, 其原因只能是水瓶平行于底面的截面的半径由底到顶逐渐变小, 故D项正确.
    故选: D.
    【点睛】
    本题主要考查函数模型及其应用.
    12、B
    【解析】
    根据题意设出未知数,根据甲所用的时间=乙所用的时间,用时间列出分式方程即可.
    【详解】
    设乙每天完成x个零件,则甲每天完成(x+8)个.
    即得, ,故选B.
    【点睛】
    找出甲所用的时间=乙所用的时间这个关系式是本题解题的关键.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、70°.
    【解析】
    由平角求出∠AED的度数,由角平分线得出∠DEF的度数,再由平行线的性质即可求出∠AFE的度数.
    【详解】
    ∵∠AEC=40°,
    ∴∠AED=180°﹣∠AEC=140°,
    ∵EF平分∠AED,
    ∴,
    又∵AB∥CD,
    ∴∠AFE=∠DEF=70°.
    故答案为:70
    【点睛】
    本题考查的是平行线的性质以及角平分线的定义.熟练掌握平行线的性质,求出∠DEF的度数是解决问题的关键.
    14、6
    【解析】
    试题分析:由题意得:AB=AO=CO,即AC=2AB,且OE垂直平分AC,
    ∴AE=CE,
    设AB=AO=OC=x,
    则有AC=2x,∠ACB=30°,
    在Rt△ABC中,根据勾股定理得:BC=x,
    在Rt△OEC中,∠OCE=30°,
    ∴OE=EC,即BE=EC,
    ∵BE=3,
    ∴OE=3,EC=6,
    则AE=6
    故答案为6.
    15、
    【解析】
    分析:根据已知条件得到被墨汁覆盖的三个数为:10,13,13,根据方差公式即可得到结论.
    详解:∵平均数是12,
    ∴这组数据的和=12×7=84,
    ∴被墨汁覆盖三天的数的和=84−4×12=36,
    ∵这组数据唯一众数是13,
    ∴被墨汁覆盖的三个数为:10,13,13,


    故答案为
    点睛:考查方差,算术平均数,众数,根据这组数据唯一众数是13,得到被墨汁覆盖的三个数为:10,13,13是解题的关键.
    16、2<x≤1
    【解析】
    本题可根据不等式组分别求出每一个不等式的解集,然后即可确定不等式组的解集.
    【详解】
    由①得x>2,
    由②得x≤1,
    ∴不等式组的解集为2<x≤1.
    故答案为:2<x≤1.
    【点睛】
    此题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解,求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).
    17、1或9
    【解析】
    (1)点E在AC的延长线上时,过点O作OFAC交AC于点F,如图所示

    ∵OD=OA,
    ∴∠OAD=∠ODA,
    ∵AD平分∠BAE,
    ∴∠OAD=∠ODA=∠DAC,
    ∴OD//AE,
    ∵DE是圆的切线,
    ∴DE⊥OD,
    ∴∠ODE=∠E=90o,
    ∴四边形ODEF是矩形,
    ∴OF=DE,EF=OD=5,
    又∵OF⊥AC,
    ∴AF=,
    ∴AE=AF+EF=5+4=9.
    (2)当点E在CA的线上时,过点O作OFAC交AC于点F,如图所示

    同(1)可得:EF=OD=5,OF=DE=3,
    在直角三角形AOF中,AF=,
    ∴AE=EF-AF=5-4=1.
    18、1
    【解析】
    根据多边形的内角和定理:180°•(n-2)求解即可.
    【详解】
    由题意可得:180°•(n-2)=150°•n,
    解得n=1.
    故多边形是1边形.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、(1)y=﹣x2+x+2;(2)y=2x+2;(3)①线段BP与线段AE的关系是相互垂直;②点P的坐标为:(﹣4+2,﹣8+4)或(﹣4﹣2,﹣8﹣4)或(0,﹣4)或(﹣,﹣4).
    【解析】
    (1)将A(5,0)和点B(﹣3,﹣4)代入y=ax2+bx+2,即可求解;
    (2)C点坐标为(0,2),把点B、C的坐标代入直线方程y=kx+b即可求解;
    (3)①AE直线的斜率kAE=2,而直线BC斜率的kAE=2即可求解;
    ②考虑当P点在线段BC上时和在线段BE上时两种情况,利用PM′=PM即可求解.
    【详解】
    (1)将A(5,0)和点B(﹣3,﹣4)代入y=ax2+bx+2,
    解得:a=﹣,b=,
    故函数的表达式为y=﹣x2+x+2;
    (2)C点坐标为(0,2),把点B、C的坐标代入直线方程y=kx+b,
    解得:k=2,b=2,
    故:直线BC的函数表达式为y=2x+2,
    (3)①E是点B关于y轴的对称点,E坐标为(3,﹣4),
    则AE直线的斜率kAE=2,而直线BC斜率的kAE=2,
    ∴AE∥BC,而EP⊥BC,∴BP⊥AE
    而BP=AE,∴线段BP与线段AE的关系是相互垂直;
    ②设点P的横坐标为m,
    当P点在线段BC上时,
    P坐标为(m,2m+2),M坐标为(m,2),则PM=2m,
    直线MM′⊥BC,∴kMM′=﹣,
    直线MM′的方程为:y=﹣x+(2+m),
    则M′坐标为(0,2+m)或(4+m,0),
    由题意得:PM′=PM=2m,
    PM′2=42+m2=(2m)2,此式不成立,
    或PM′2=m2+(2m+2)2=(2m)2,
    解得:m=﹣4±2,
    故点P的坐标为(﹣4±2,﹣8±4);
    当P点在线段BE上时,
    点P坐标为(m,﹣4),点M坐标为(m,2),
    则PM=6,
    直线MM′的方程不变,为y=﹣x+(2+m),
    则M′坐标为(0,2+m)或(4+m,0),
    PM′2=m2+(6+m)2=(2m)2,
    解得:m=0,或﹣;
    或PM′2=42+42=(6)2,无解;
    故点P的坐标为(0,﹣4)或(﹣,﹣4);
    综上所述:
    点P的坐标为:(﹣4+2,﹣8+4)或(﹣4﹣2,﹣8﹣4)或(0,﹣4)或(﹣,﹣4).
    【点睛】
    主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.
    20、(1)△ABD,△ACD,△DCE(2)△BDF∽△CED∽△DEF,证明见解析;(3)4.
    【解析】
    (1)根据等腰三角形的性质以及相似三角形的判定得出△ADE∽△ABD∽△ACD∽△DCE,同理可得:△ADE∽△ACD.△ADE∽△DCE.
    (2)利用已知首先求出∠BFD=∠CDE,即可得出△BDF∽△CED,再利用相似三角形的性质得出,从而得出△BDF∽△CED∽△DEF.
    (3)利用△DEF的面积等于△ABC的面积的,求出DH的长,从而利用S△DEF的值求出EF即可
    【详解】
    解:(1)图(1)中与△ADE相似的有△ABD,△ACD,△DCE.
    (2)△BDF∽△CED∽△DEF,证明如下:
    ∵∠B+∠BDF+∠BFD=30°,∠EDF+∠BDF+∠CDE=30°,
    又∵∠EDF=∠B,
    ∴∠BFD=∠CDE.
    ∵AB=AC,
    ∴∠B=∠C.
    ∴△BDF∽△CED.
    ∴.
    ∵BD=CD,
    ∴,即.
    又∵∠C=∠EDF,
    ∴△CED∽△DEF.
    ∴△BDF∽△CED∽△DEF.
    (3)连接AD,过D点作DG⊥EF,DH⊥BF,垂足分别为G,H.

    ∵AB=AC,D是BC的中点,
    ∴AD⊥BC,BD=BC=1.
    在Rt△ABD中,AD2=AB2﹣BD2,即AD2=102﹣3,
    ∴AD=2.
    ∴S△ABC=•BC•AD=×3×2=42,
    S△DEF=S△ABC=×42=3.
    又∵•AD•BD=•AB•DH,
    ∴.
    ∵△BDF∽△DEF,
    ∴∠DFB=∠EFD.
    ∵DH⊥BF,DG⊥EF,
    ∴∠DHF=∠DGF.
    又∵DF=DF,
    ∴△DHF≌△DGF(AAS).
    ∴DH=DG=.
    ∵S△DEF=·EF·DG=·EF·=3,
    ∴EF=4.
    【点睛】
    本题考查了和相似有关的综合性题目,用到的知识点有三角形相似的判定和性质、等腰三角形的性质以及勾股定理的运用,灵活运用相似三角形的判定定理和性质定理是解题的关键,解答时,要仔细观察图形、选择合适的判定方法,注意数形结合思想的运用.
    21、(1)25;(2)8°48′;(3).
    【解析】
    试题分析:(1)由C等级频数为15除以C等级所占的百分比60%,即可求得m的值;(2)首先求得B等级的频数,继而求得B等级所在扇形的圆心角的大小;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与其中至少有一家是A等级的情况,再利用概率公式求解即可求得答案.
    试题解析:(1)∵C等级频数为15,占60%,
    ∴m=15÷60%=25;
    (2)∵B等级频数为:25﹣2﹣15﹣6=2,
    ∴B等级所在扇形的圆心角的大小为:×360°=28.8°=28°48′;
    (3)评估成绩不少于80分的连锁店中,有两家等级为A,有两家等级为B,画树状图得:

    ∵共有12种等可能的结果,其中至少有一家是A等级的有10种情况,
    ∴其中至少有一家是A等级的概率为:=.
    考点:频数(率)分布表;扇形统计图;列表法与树状图法.
    22、(1)(1,4)(2)①点M坐标(﹣,)或(﹣,﹣);②m的值为 或
    【解析】
    (1)利用待定系数法即可解决问题;
    (2)①根据tan∠MBA=,tan∠BDE==,由∠MBA=∠BDE,构建方程即可解决问题;②因为点M、N关于抛物线的对称轴对称,四边形MPNQ是正方形,推出点P是抛物线的对称轴与x轴的交点,即OP=1,易证GM=GP,即|-m2+2m+3|=|1-m|,解方程即可解决问题.
    【详解】
    解:(1)把点B(3,0),C(0,3)代入y=﹣x2+bx+c,
    得到,解得,
    ∴抛物线的解析式为y=﹣x2+2x+3,
    ∵y=﹣x2+2x﹣1+1+3=﹣(x﹣1)2+4,
    ∴顶点D坐标(1,4);
    (2)①作MG⊥x轴于G,连接BM.则∠MGB=90°,设M(m,﹣m2+2m+3),

    ∴MG=|﹣m2+2m+3|,BG=3﹣m,
    ∴tan∠MBA=,
    ∵DE⊥x轴,D(1,4),
    ∴∠DEB=90°,DE=4,OE=1,
    ∵B(3,0),
    ∴BE=2,
    ∴tan∠BDE==,
    ∵∠MBA=∠BDE,
    ∴=,
    当点M在x轴上方时, =,
    解得m=﹣或3(舍弃),
    ∴M(﹣,),
    当点M在x轴下方时, =,
    解得m=﹣或m=3(舍弃),
    ∴点M(﹣,﹣),
    综上所述,满足条件的点M坐标(﹣,)或(﹣,﹣);
    ②如图中,∵MN∥x轴,

    ∴点M、N关于抛物线的对称轴对称,
    ∵四边形MPNQ是正方形,
    ∴点P是抛物线的对称轴与x轴的交点,即OP=1,
    易证GM=GP,即|﹣m2+2m+3|=|1﹣m|,
    当﹣m2+2m+3=1﹣m时,解得m=,
    当﹣m2+2m+3=m﹣1时,解得m=,
    ∴满足条件的m的值为或.
    【点睛】
    本题考查二次函数综合题、锐角三角函数、正方形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会利用参数构建方程解决问题,属于中考压轴题.
    23、(1);(2)原分式方程中“?”代表的数是-1.
    【解析】
    (1)“?”当成5,解分式方程即可,
    (2)方程有增根是去分母时产生的,故先去分母,再将x=2代入即可解答.
    【详解】
    (1)方程两边同时乘以得

    解得
    经检验,是原分式方程的解.
    (2)设?为,
    方程两边同时乘以得

    由于是原分式方程的增根,
    所以把代入上面的等式得


    所以,原分式方程中“?”代表的数是-1.
    【点睛】
    本题考查了分式方程解法和增根的定义及应用.增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.增根确定后可按如下步骤进行: ①化分式方程为整式方程;  ②把增根代入整式方程即可求得相关字母的值.
    24、 (1) ,点D的坐标为(2,-8) (2) 点F的坐标为(7,)或(5,)(3) 菱形对角线MN的长为或.
    【解析】
    分析:(1)利用待定系数法,列方程求二次函数解析式.(2)利用解析法,∠FAB=∠EDB, tan∠FAG=tan∠BDE,求出F点坐标.(3)分类讨论,当MN在x轴上方时,在x轴下方时分别计算MN.
    详解:
    (1)∵OB=OC=1,
    ∴B(1,0),C(0,-1).
    ∴,
    解得,
    ∴抛物线的解析式为.
    ∵=,
    ∴点D的坐标为(2,-8).

    (2)如图,当点F在x轴上方时,设点F的坐标为(x,).过点F作FG⊥x轴于点G,易求得OA=2,则AG=x+2,FG=.
    ∵∠FAB=∠EDB,
    ∴tan∠FAG=tan∠BDE,
    即,
    解得,(舍去).
    当x=7时,y=,
    ∴点F的坐标为(7,).
    当点F在x轴下方时,设同理求得点F的坐标为(5,).
    综上所述,点F的坐标为(7,)或(5,).
    (3)∵点P在x轴上,

    ∴根据菱形的对称性可知点P的坐标为(2,0).
    如图,当MN在x轴上方时,设T为菱形对角线的交点.
    ∵PQ=MN,
    ∴MT=2PT.
    设TP=n,则MT=2n. ∴M(2+2n,n).
    ∵点M在抛物线上,
    ∴,即.
    解得,(舍去).
    ∴MN=2MT=4n=.
    当MN在x轴下方时,设TP=n,得M(2+2n,-n).
    ∵点M在抛物线上,
    ∴,
    即.
    解得,(舍去).
    ∴MN=2MT=4n=.
    综上所述,菱形对角线MN的长为或.
    点睛:
    1.求二次函数的解析式
    (1)已知二次函数过三个点,利用一般式,y=ax2+bx+c().列方程组求二次函数解析式.
    (2)已知二次函数与x轴的两个交点(,利用双根式,y=()求二次函数解析式,而且此时对称轴方程过交点的中点,.
    2.处理直角坐标系下,二次函数与几何图形问题:第一步要写出每个点的坐标(不能写出来的,可以用字母表示),写已知点坐标的过程中,经常要做坐标轴的垂线,第二步,利用特殊图形的性质和函数的性质,往往是解决问题的钥匙.
    25、(1)详见解析;(2)的值为3或1.
    【解析】
    (1)将原方程整理成一般形式,令即可求解,(2)将x=1代入,求得m的值,再重新解方程即可.
    【详解】
    证明:原方程可化为,
    ,,,

    不论m为何值,该方程总有两个不相等的实数根.
    解:将代入原方程,得:,
    解得:,.
    的值为3或1.
    【点睛】
    本题考查了参数对一元二次方程根的影响.中等难度.关键是将根据不同情况讨论参数的取值范围.
    26、(1)甲队单独完成此项工程需要15天,乙队单独完成此项工程需要1天;(2)甲队应得的报酬为1600元,乙队应得的报酬为2400元.
    【解析】
    (1)设甲队单独完成此项工程需要3x天,则乙队单独完成此项工程需要2x天,根据两队共同施工6天可以完成该工程,即可得出关于x的分式方程,解之经检验即可得出结论;
    (2)根据甲、乙两队单独完成这项工作所需的时间比可得出两队每日完成的工作量之比,再结合总报酬为4000元即可求出结论.
    【详解】
    (1)设甲队单独完成此项工程需要3x天,则乙队单独完成此项工程需要2x天,
    根据题意得:
    解得:x=5,
    经检验,x=5是所列分式方程的解且符合题意.
    ∴3x=15,2x=1.
    答:甲队单独完成此项工程需要15天,乙队单独完成此项工程需要1天.
    (2)∵甲、乙两队单独完成这项工作所需的时间比是3:2,
    ∴甲、乙两队每日完成的工作量之比是2:3,
    ∴甲队应得的报酬为(元),
    乙队应得的报酬为4000﹣1600=2400(元).
    答:甲队应得的报酬为1600元,乙队应得的报酬为2400元.
    【点睛】
    本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.
    27、(1)甲、乙两队合作完成这项工程需要36天;(2)甲、乙两队至多要合作7天
    【解析】
    (1)设甲、乙两队合作完成这项工程需要x天,根据条件:甲队先做5天,再由甲、乙合作9天,共完成总工作量的,列方程求解即可;
    (2)设甲、乙两队最多合作元天,先求出甲、乙两队合作一天完成工程的多少,再根据完成此项工程的工程款不超过190万元,列出不等式,求解即可得出答案.
    【详解】
    (1)设甲、乙两队合作完成这项工程需要x天
    根据题意得,,
    解得 x=36,
    经检验x=36是分式方程的解,
    答:甲、乙两队合作完成这项工程需要36天,
    (2)
    设甲、乙需要合作y天,根据题意得,

    解得y≤7
    答:甲、乙两队至多要合作7天.
    【点睛】
    本题考查了分式方程的应用和一元一次不等式的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解,注意检验.

    相关试卷

    重庆市綦江、长寿、巴南三校联盟2021-2022学年中考数学最后一模试卷含解析: 这是一份重庆市綦江、长寿、巴南三校联盟2021-2022学年中考数学最后一模试卷含解析,共24页。试卷主要包含了考生必须保证答题卡的整洁,下列算式中,结果等于x6的是,函数的图象上有两点,,若,则等内容,欢迎下载使用。

    2022年重庆市綦江、长寿、巴南三校联盟中考押题数学预测卷含解析: 这是一份2022年重庆市綦江、长寿、巴南三校联盟中考押题数学预测卷含解析,共19页。试卷主要包含了下列说法正确的是等内容,欢迎下载使用。

    2022届重庆綦江长寿巴南三校联盟市级名校中考冲刺卷数学试题含解析: 这是一份2022届重庆綦江长寿巴南三校联盟市级名校中考冲刺卷数学试题含解析,共23页。试卷主要包含了一元二次方程的根是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map