搜索
    上传资料 赚现金
    英语朗读宝

    浙江省台州温岭市第三中学2022年中考数学猜题卷含解析

    浙江省台州温岭市第三中学2022年中考数学猜题卷含解析第1页
    浙江省台州温岭市第三中学2022年中考数学猜题卷含解析第2页
    浙江省台州温岭市第三中学2022年中考数学猜题卷含解析第3页
    还剩22页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    浙江省台州温岭市第三中学2022年中考数学猜题卷含解析

    展开

    这是一份浙江省台州温岭市第三中学2022年中考数学猜题卷含解析,共25页。试卷主要包含了考生要认真填写考场号和座位序号,已知,下列计算正确的是等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    注意事项
    1.考生要认真填写考场号和座位序号。
    2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
    3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.已知关于x,y的二元一次方程组的解为,则a﹣2b的值是(  )
    A.﹣2 B.2 C.3 D.﹣3
    2.(2011•黑河)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,现有下列结论:①b2﹣4ac>0 ②a>0 ③b>0 ④c>0 ⑤9a+3b+c<0,则其中结论正确的个数是(  )

    A、2个 B、3个
    C、4个 D、5个
    3.如图,在正方形ABCD中,点E,F分别在BC,CD上,AE=AF,AC与EF相交于点G,下列结论:①AC垂直平分EF;②BE+DF=EF;③当∠DAF=15°时,△AEF为等边三角形;④当∠EAF=60°时,S△ABE=S△CEF,其中正确的是(  )

    A.①③ B.②④ C.①③④ D.②③④
    4.(3分)学校要组织足球比赛.赛制为单循环形式(每两队之间赛一场).计划安排21场比赛,应邀请多少个球队参赛?设邀请x个球队参赛.根据题意,下面所列方程正确的是( )
    A. B. C. D.
    5.如图,AC是⊙O的直径,弦BD⊥AO于E,连接BC,过点O作OF⊥BC于F,若BD=8cm,AE=2cm,则OF的长度是(  )

    A.3cm B. cm C.2.5cm D. cm
    6.在一次中学生田径运动会上,参加跳远的名运动员的成绩如下表所示:
    成绩(米)






    人数






    则这名运动员成绩的中位数、众数分别是( )
    A. B. C., D.
    7.如图,若△ABC内接于半径为R的⊙O,且∠A=60°,连接OB、OC,则边BC的长为(  )

    A. B. C. D.
    8.已知:如图,在正方形ABCD外取一点E,连接AE、BE、DE,过点A作AE的垂线交DE于点P,若AE=AP=1,PB=.下列结论:①△APD≌△AEB;②点B到直线AE的距离为;③EB⊥ED;④S△APD+S△APB=1+;⑤S正方形ABCD=4+.其中正确结论的序号是(  )

    A.①③④ B.①②⑤ C.③④⑤ D.①③⑤
    9.如图,从正方形纸片的顶点沿虚线剪开,则∠1的度数可能是( )

    A.44 B.45 C.46 D.47
    10.下列计算正确的是
    A.a2·a2=2a4 B.(-a2)3=-a6 C.3a2-6a2=3a2 D.(a-2)2=a2-4
    11.一次函数y=ax+b与反比例函数y=在同一平面直角坐标系中的图象如左图所示,则二次函数y=ax2+bx+c的图象可能是()

    A. B. C. D.
    12.甲、乙两人沿相同的路线由A地到B地匀速前进,A、B两地间的路程为40km.他们前进的路程为s(km),甲出发后的时间为t(h),甲、乙前进的路程与时间的函数图象如图所示.根据图象信息,下列说法不正确的是( )

    A.甲的速度是10km/h B.乙的速度是20km/h
    C.乙出发h后与甲相遇 D.甲比乙晚到B地2h
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.在Rt△ABC中,∠C=90°,sinA=,那么cosA=________.
    14.如图是一本折扇,其中平面图是一个扇形,扇面ABDC的宽度AC是管柄长OA的一半,已知OA=30cm,∠AOB=120°,则扇面ABDC的周长为_____cm

    15.一等腰三角形,底边长是18厘米,底边上的高是18厘米,现在沿底边依次从下往上画宽度均为3厘米的矩形,画出的矩形是正方形时停止,则这个矩形是第_____个.
    16.在一个不透明的空袋子里放入3个白球和2个红球,每个球除颜色外完全相同,小乐从中任意摸出1个球,摸出的球是红球,放回后充分摇匀,又从中任意摸出1个球,摸到红球的概率是 ____ .
    17.有一个计算程序,每次运算都是把一个数先乘2,再除以它与1的和,多次重复进行这种运算的过程如下:

    则第n次的运算结果是____________(用含字母x和n的代数式表示).
    18.某种药品原来售价100元,连续两次降价后售价为81元,若每次下降的百分率相同,则这个百分率是 .
    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)某商场为了吸引顾客,设计了一种促销活动:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”和“30元”的字样.规定:顾客在本商场同一日内,每消费满200元,就可以在箱子里先后摸出两个球(第一次摸出后不放回),商场根据两小球所标金额的和返还相应价格的购物券,可以重新在本商场消费,某顾客刚好消费200元.
    (1)该顾客至少可得到_____元购物券,至多可得到_______元购物券;
    (2)请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于30元的概率.
    20.(6分)如图,在Rt△ABC中,,点在边上,⊥,点为垂足,,∠DAB=450,tanB=.
    (1)求的长;
    (2)求的余弦值.

    21.(6分)某服装店用4000元购进一批某品牌的文化衫若干件,很快售完,该店又用6300元钱购进第二批这种文化衫,所进的件数比第一批多40%,每件文化衫的进价比第一批每件文化衫的进价多10元,请解答下列问题:
    (1)求购进的第一批文化衫的件数;
    (2)为了取信于顾客,在这两批文化衫的销售中,售价保持了一致.若售完这两批文化衫服装店的总利润不少于4100元钱,那么服装店销售该品牌文化衫每件的最低售价是多少元?
    22.(8分)某学校准备采购一批茶艺耗材和陶艺耗材.经查询,如果按照标价购买两种耗材,当购买茶艺耗材的数量是陶艺耗材数量的2倍时,购买茶艺耗材共需要18000元,购买陶艺耗材共需要12000元,且一套陶艺耗材单价比一套茶艺耗材单价贵150元.求一套茶艺耗材、一套陶艺耗材的标价分别是多少元?学校计划购买相同数量的茶艺耗材和陶艺耗材.商家告知,因为周年庆,茶艺耗材的单价在标价的基础上降价2元,陶艺耗材的单价在标价的基础降价150元,该校决定增加采购数量,实际购买茶艺耗材和陶艺耗材的数量在原计划基础上分别增加了2.5%和,结果在结算时发现,两种耗材的总价相等,求的值.
    23.(8分)图 1 和图 2 中,优弧纸片所在⊙O 的半径为 2,AB=2 ,点 P为优弧上一点(点 P 不与 A,B 重合),将图形沿 BP 折叠,得到点 A 的对称点 A′.

    发现:
    (1)点 O 到弦 AB 的距离是 ,当 BP 经过点 O 时,∠ABA′= ;
    (2)当 BA′与⊙O 相切时,如图 2,求折痕的长.
    拓展:把上图中的优弧纸片沿直径 MN 剪裁,得到半圆形纸片,点 P(不与点 M, N 重合)为半圆上一点,将圆形沿 NP 折叠,分别得到点 M,O 的对称点 A′, O′,设∠MNP=α.
    (1)当α=15°时,过点 A′作 A′C∥MN,如图 3,判断 A′C 与半圆 O 的位置关系,并说明理由;
    (2)如图 4,当α= °时,NA′与半圆 O 相切,当α= °时,点 O′落在上.
    (3)当线段 NO′与半圆 O 只有一个公共点 N 时,直接写出β的取值范围.
    24.(10分)为了传承祖国的优秀传统文化,某校组织了一次“诗词大会”,小明和小丽同时参加,其中,有一道必答题是:从如图所示的九宫格中选取七个字组成一句唐诗,其答案为“山重水复疑无路”.
    (1)小明回答该问题时,仅对第二个字是选“重”还是选“穷”难以抉择,随机选择其中一个,则小明回答正确的概率是 ;
    (2)小丽回答该问题时,对第二个字是选“重”还是选“穷”、第四个字是选“富”还是选“复”都难以抉择,若分别随机选择,请用列表或画树状图的方法求小丽回答正确的概率.
    九宫格

    25.(10分)计算:2sin60°﹣(π﹣2)0+(__)-1+|1﹣|.
    26.(12分)已知:如图,梯形ABCD中,AD∥BC,DE∥AB,与对角线交于点,∥,且FG=EF.
    (1)求证:四边形是菱形;
    (2)联结AE,又知AC⊥ED,求证: .

    27.(12分)中央电视台的“朗读者”节目激发了同学们的读书热情,为了引导学生“多读书,读好书“,某校对八年级部分学生的课外阅读量进行了随机调查,整理调查结果发现,学生课外阅读的本书最少的有5本,最多的有8本,并根据调查结果绘制了不完整的图表,如图所示:
    本数(本)
    频数(人数)
    频率
    5
    a
    0.2
    6
    18
    0.1
    7
    14
    b
    8
    8
    0.16
    合计
    50
    c
    我们定义频率=,比如由表中我们可以知道在这次随机调查中抽样人数为50人课外阅读量为6本的同学为18人,因此这个人数对应的频率就是=0.1.
    (1)统计表中的a、b、c的值;
    (2)请将频数分布表直方图补充完整;
    (3)求所有被调查学生课外阅读的平均本数;
    (4)若该校八年级共有600名学生,你认为根据以上调查结果可以估算分析该校八年级学生课外阅读量为7本和8本的总人数为多少吗?请写出你的计算过程.




    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、B
    【解析】
    把代入方程组得:,
    解得:,
    所以a−2b=−2×()=2.
    故选B.
    2、B
    【解析】分析:由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据抛物线与x轴交点及x=1时二次函数的值的情况进行推理,进而对所得结论进行判断.
    解答:解:①根据图示知,二次函数与x轴有两个交点,所以△=b2-4ac>0;故①正确;
    ②根据图示知,该函数图象的开口向上,
    ∴a>0;
    故②正确;
    ③又对称轴x=-=1,
    ∴<0,
    ∴b<0;
    故本选项错误;
    ④该函数图象交于y轴的负半轴,
    ∴c<0;
    故本选项错误;
    ⑤根据抛物线的对称轴方程可知:(-1,0)关于对称轴的对称点是(3,0);
    当x=-1时,y<0,所以当x=3时,也有y<0,即9a+3b+c<0;故⑤正确.
    所以①②⑤三项正确.
    故选B.
    3、C
    【解析】
    ①通过条件可以得出△ABE≌△ADF,从而得出∠BAE=∠DAF,BE=DF,由正方形的性质就可以得出EC=FC,就可以得出AC垂直平分EF,
    ②设BC=a,CE=y,由勾股定理就可以得出EF与x、y的关系,表示出BE与EF,即可判断BE+DF与EF关系不确定;
    ③当∠DAF=15°时,可计算出∠EAF=60°,即可判断△EAF为等边三角形,
    ④当∠EAF=60°时,设EC=x,BE=y,由勾股定理就可以得出x与y的关系,表示出BE与EF,利用三角形的面积公式分别表示出S△CEF和S△ABE,再通过比较大小就可以得出结论.
    【详解】
    ①四边形ABCD是正方形,
    ∴AB═AD,∠B=∠D=90°.
    在Rt△ABE和Rt△ADF中,

    ∴Rt△ABE≌Rt△ADF(HL),
    ∴BE=DF
    ∵BC=CD,
    ∴BC-BE=CD-DF,即CE=CF,
    ∵AE=AF,
    ∴AC垂直平分EF.(故①正确).
    ②设BC=a,CE=y,
    ∴BE+DF=2(a-y)
    EF=y,
    ∴BE+DF与EF关系不确定,只有当y=(2−)a时成立,(故②错误).
    ③当∠DAF=15°时,
    ∵Rt△ABE≌Rt△ADF,
    ∴∠DAF=∠BAE=15°,
    ∴∠EAF=90°-2×15°=60°,
    又∵AE=AF
    ∴△AEF为等边三角形.(故③正确).
    ④当∠EAF=60°时,设EC=x,BE=y,由勾股定理就可以得出:
    (x+y)2+y2=(x)2
    ∴x2=2y(x+y)
    ∵S△CEF=x2,S△ABE=y(x+y),
    ∴S△ABE=S△CEF.(故④正确).
    综上所述,正确的有①③④,
    故选C.
    【点睛】
    本题考查了正方形的性质的运用,全等三角形的判定及性质的运用,勾股定理的运用,等边三角形的性质的运用,三角形的面积公式的运用,解答本题时运用勾股定理的性质解题时关键.
    4、B.
    【解析】
    试题分析:设有x个队,每个队都要赛(x﹣1)场,但两队之间只有一场比赛,由题意得:,故选B.
    考点:由实际问题抽象出一元二次方程.
    5、D
    【解析】
    分析:根据垂径定理得出OE的长,进而利用勾股定理得出BC的长,再利用相似三角形的判定和性质解答即可.
    详解:连接OB,

    ∵AC是⊙O的直径,弦BD⊥AO于E,BD=1cm,AE=2cm.
    在Rt△OEB中,OE2+BE2=OB2,即OE2+42=(OE+2)2
    解得:OE=3,
    ∴OB=3+2=5,
    ∴EC=5+3=1.
    在Rt△EBC中,BC=.
    ∵OF⊥BC,
    ∴∠OFC=∠CEB=90°.
    ∵∠C=∠C,
    ∴△OFC∽△BEC,
    ∴,即,
    解得:OF=.
    故选D.
    点睛:本题考查了垂径定理,关键是根据垂径定理得出OE的长.
    6、D
    【解析】
    根据中位数、众数的定义即可解决问题.
    【详解】
    解:这些运动员成绩的中位数、众数分别是4.70,4.1.
    故选:D.
    【点睛】
    本题考查中位数、众数的定义,解题的关键是记住中位数、众数的定义,属于中考基础题.
    7、D
    【解析】
    延长BO交圆于D,连接CD,则∠BCD=90°,∠D=∠A=60°;又BD=2R,根据锐角三角函数的定义得BC=R.
    【详解】
    解:延长BO交⊙O于D,连接CD,

    则∠BCD=90°,∠D=∠A=60°,
    ∴∠CBD=30°,
    ∵BD=2R,
    ∴DC=R,
    ∴BC=R,
    故选D.
    【点睛】
    此题综合运用了圆周角定理、直角三角形30°角的性质、勾股定理,注意:作直径构造直角三角形是解决本题的关键.
    8、D
    【解析】
    ①首先利用已知条件根据边角边可以证明△APD≌△AEB;
    ②由①可得∠BEP=90°,故BE不垂直于AE过点B作BF⊥AE延长线于F,由①得∠AEB=135°所以∠EFB=45°,所以△EFB是等腰Rt△,故B到直线AE距离为BF=,故②是错误的;
    ③利用全等三角形的性质和对顶角相等即可判定③说法正确;
    ④由△APD≌△AEB,可知S△APD+S△APB=S△AEB+S△APB,然后利用已知条件计算即可判定;
    ⑤连接BD,根据三角形的面积公式得到S△BPD=PD×BE=,所以S△ABD=S△APD+S△APB+S△BPD=2+,由此即可判定.
    【详解】
    由边角边定理易知△APD≌△AEB,故①正确;
    由△APD≌△AEB得,∠AEP=∠APE=45°,从而∠APD=∠AEB=135°,
    所以∠BEP=90°,
    过B作BF⊥AE,交AE的延长线于F,则BF的长是点B到直线AE的距离,
    在△AEP中,由勾股定理得PE=,
    在△BEP中,PB= ,PE=,由勾股定理得:BE=,
    ∵∠PAE=∠PEB=∠EFB=90°,AE=AP,
    ∴∠AEP=45°,
    ∴∠BEF=180°-45°-90°=45°,
    ∴∠EBF=45°,
    ∴EF=BF,
    在△EFB中,由勾股定理得:EF=BF=,
    故②是错误的;
    因为△APD≌△AEB,所以∠ADP=∠ABE,而对顶角相等,所以③是正确的;
    由△APD≌△AEB,
    ∴PD=BE=,
    可知S△APD+S△APB=S△AEB+S△APB=S△AEP+S△BEP=+,因此④是错误的;
    连接BD,则S△BPD=PD×BE= ,
    所以S△ABD=S△APD+S△APB+S△BPD=2+,
    所以S正方形ABCD=2S△ABD=4+ .
    综上可知,正确的有①③⑤.

    故选D.
    【点睛】
    考查了正方形的性质、全等三角形的性质与判定、三角形的面积及勾股定理,综合性比较强,解题时要求熟练掌握相关的基础知识才能很好解决问题.
    9、A
    【解析】
    连接正方形的对角线,然后依据正方形的性质进行判断即可.
    【详解】
    解:如图所示:

    ∵四边形为正方形,
    ∴∠1=45°.
    ∵∠1<∠1.
    ∴∠1<45°.
    故选:A.
    【点睛】
    本题主要考查的是正方形的性质,熟练掌握正方形的性质是解题的关键.
    10、B
    【解析】【分析】根据同底数幂乘法、幂的乘方、合并同类项法则、完全平方公式逐项进行计算即可得.
    【详解】A. a2·a2=a4 ,故A选项错误;
    B. (-a2)3=-a6 ,正确;
    C. 3a2-6a2=-3a2 ,故C选项错误;
    D. (a-2)2=a2-4a+4,故D选项错误,
    故选B.
    【点睛】本题考查了同底数幂的乘法、幂的乘方、合并同类项、完全平方公式,熟练掌握各运算的运算法则是解题的关键.
    11、B
    【解析】
    根据题中给出的函数图像结合一次函数性质得出a<0,b>0,再由反比例函数图像性质得出c<0,从而可判断二次函数图像开口向下,对称轴:>0,即在y轴的右边,与y轴负半轴相交,从而可得答案.
    【详解】
    解:∵一次函数y=ax+b图像过一、二、四,
    ∴a<0,b>0,
    又∵反比例 函数y=图像经过二、四象限,
    ∴c<0,
    ∴二次函数对称轴:>0,
    ∴二次函数y=ax2+bx+c图像开口向下,对称轴在y轴的右边,与y轴负半轴相交,
    故答案为B.
    【点睛】
    本题考查了二次函数的图形,一次函数的图象,反比例函数的图象,熟练掌握二次函数的有关性质:开口方向、对称轴、与y轴的交点坐标等确定出a、b、c的情况是解题的关键.
    12、B
    【解析】
    由图可知,甲用4小时走完全程40km,可得速度为10km/h;
    乙比甲晚出发一小时,用1小时走完全程,可得速度为40km/h.
    故选B

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、
    【解析】
    ∵Rt△ABC中,∠C=90°,∴sinA=,
    ∵sinA=,∴c=2a,∴b= ,
    ∴cosA=,
    故答案为.

    14、1π+1.
    【解析】
    分析:根据题意求出OC,根据弧长公式分别求出AB、CD的弧长,根据扇形周长公式计算.
    详解:由题意得,OC=AC=OA=15,
    的长==20π,
    的长==10π,
    ∴扇面ABDC的周长=20π+10π+15+15=1π+1(cm),
    故答案为1π+1.
    点睛:本题考查的是弧长的计算,掌握弧长公式: 是解题的关键.
    15、5
    【解析】
    根据相似三角形的相似比求得顶点到这个正方形的长,再根据矩形的宽求得是第几张.
    【详解】
    解:已知剪得的纸条中有一张是正方形,则正方形中平行于底边的边是3,
    所以根据相似三角形的性质可设从顶点到这个正方形的线段为x,
    则=,解得x=3,
    所以另一段长为18-3=15,
    因为15÷3=5,所以是第5张.
    故答案为:5.
    【点睛】
    本题主要考查了相相似三角形的判定和性质,关键是根据似三角形的性质及等腰三角形的性质的综合运用解答.
    16、
    【解析】
    【分析】袋子中一共有5个球,其中有2个红球,用2除以5即可得从中摸出一个球是红球的概率.
    【详解】袋子中有3个白球和2个红球,一共5个球,
    所以从中任意摸出一个球是红球的概率为:,
    故答案为.
    【点睛】本题考查了概率的计算,用到的知识点为:可能性等于所求情况数与总情况数之比.
    17、
    【解析】
    试题分析:根据题意得;;;根据以上规律可得:=.
    考点:规律题.
    18、10%.
    【解析】
    设平均每次降价的百分率为,那么第一次降价后的售价是原来的,那么第二次降价后的售价是原来的,根据题意列方程解答即可.
    【详解】
    设平均每次降价的百分率为,根据题意列方程得,

    解得,(不符合题意,舍去),
    答:这个百分率是.
    故答案为.
    【点睛】
    本题考查一元二次方程的应用,要掌握求平均变化率的方法.若设变化前的量为,变化后的量为,平均变化率为,则经过两次变化后的数量关系为.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、解:(1)10,50;
    (2)解法一(树状图):

    从上图可以看出,共有12种可能结果,其中大于或等于30元共有8种可能结果,
    因此P(不低于30元)= ;
    解法二(列表法):

    (以下过程同“解法一”)
    【解析】
    试题分析:(1)由在一个不透明的箱子里放有4个相同的小球,球上分别标有“0”元,“10”元,“20”元和“30”元的字样,规定:顾客在本商场同一日内,每消费满200元,就可以再箱子里先后摸出两个球(第一次摸出后不放回).即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与顾客所获得购物券的金额不低于30元的情况,再利用概率公式求解即可求得答案.
    试题解析:(1)10,50;
    (2)解法一(树状图):
    ,
    从上图可以看出,共有12种可能结果,其中大于或等于30元共有8种可能结果,
    因此P(不低于30元)==;
    解法二(列表法):


    0

    10

    20

    30

    0

    ﹣﹣

    10

    20

    30

    10

    10

    ﹣﹣

    30

    40

    20

    20

    30

    ﹣﹣

    50

    30

    30

    40

    50

    ﹣﹣

    从上表可以看出,共有12种可能结果,其中大于或等于30元共有8种可能结果,
    因此P(不低于30元)==;
    考点:列表法与树状图法.
    【详解】
    请在此输入详解!
    20、 (1)3;(2)
    【解析】
    分析:(1)由题意得到三角形ADE为等腰直角三角形,在直角三角形DEB中,利用锐角三角函数定义求出DE与BE之比,设出DE与BE,由AB=7求出各自的值,确定出DE即可;
    (2)在直角三角形中,利用勾股定理求出AD与BD的长,根据tanB的值求出cosB的值,确定出BC的长,由BC﹣BD求出CD的长,利用锐角三角函数定义求出所求即可.
    详解:(1)∵DE⊥AB,∴∠DEA=90°.又∵∠DAB=41°,∴DE=AE.在Rt△DEB中,∠DEB=90°,tanB==,设DE=3x,那么AE=3x,BE=4x.∵AB=7,∴3x+4x=7,解得:x=1,∴DE=3;
    (2)在Rt△ADE中,由勾股定理,得:AD=3,同理得:BD=1.在Rt△ABC中,由tanB=,可得:cosB=,∴BC=,∴CD=,∴cos∠CDA==,即∠CDA的余弦值为.
    点睛:本题考查了解直角三角形,涉及的知识有:锐角三角函数定义,勾股定理,等腰直角三角形的判定与性质,熟练掌握各自的性质是解答本题的关键.
    21、(1)50件;(2)120元.
    【解析】
    (1)设第一批购进文化衫x件,根据数量=总价÷单价结合第二批每件文化衫的进价比第一批每件文化衫的进价多10元,即可得出关于x的分式方程,解之经检验后即可得出结论;
    (2)根据第二批购进的件数比第一批多40%,可求出第二批的进货数量,设该服装店销售该品牌文化衫每件的售价为y元,根据利润=销售单价×销售数量-进货总价,即可得出关于y的一元一次不等式,解之取其内的最小值即可得出结论.
    【详解】
    解:(1)设第一批购进文化衫x件,
    根据题意得: +10=,
    解得:x=50,
    经检验,x=50是原方程的解,且符合题意,
    答:第一批购进文化衫50件;
    (2)第二批购进文化衫(1+40%)×50=70(件),
    设该服装店销售该品牌文化衫每件的售价为y元,
    根据题意得:(50+70)y﹣4000﹣6300≥4100,
    解得:y≥120,
    答:该服装店销售该品牌文化衫每件最低售价为120元.
    【点睛】
    本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量间的关系,正确列出一元一次不等式.
    22、(1)购买一套茶艺耗材需要450元,购买一套陶艺耗材需要600元;(2)的值为95.
    【解析】
    (1)设购买一套茶艺耗材需要元,则购买一套陶艺耗材需要元,根据购买茶艺耗材的数量是陶艺耗材数量的2倍列方程求解即可;
    (2)设今年原计划购买茶艺耗材和陶艺素材的数量均为,根据两种耗材的总价相等列方程求解即可.
    【详解】
    (1)设购买一套茶艺耗材需要元,则购买一套陶艺耗材需要元,根据题意,得.
    解方程,得.
    经检验,是原方程的解,且符合题意
    .
    答:购买一套茶艺耗材需要450元,购买一套陶艺耗材需要600元.
    (2)设今年原计划购买茶艺耗材和陶艺素材的数量均为,由题意得:

    整理,得
    解方程,得,(舍去).
    的值为95.
    【点睛】
    本题考查了分式方程的应用及一元二次方程的应用,找出等量关系,列出方程是解答本题的关键,列方程解决实际问题注意要检验与实际情况是否相符.
    23、发现:(1)1,60°;(2)2;拓展:(1)相切,理由详见解析;(2)45°;30°;(3)0°<α<30°或 45°≤α<90°.
    【解析】
    发现:(1)利用垂径定理和勾股定理即可求出点O到AB的距离;利用锐角三角函数的定义及轴对称性就可求出∠ABA′.
    (2)根据切线的性质得到∠OBA′=90°,从而得到∠ABA′=120°,就可求出∠ABP,进而求出∠OBP=30°.过点O作OG⊥BP,垂足为G,容易求出OG、BG的长,根据垂径定理就可求出折痕的长.
    拓展:(1)过A'、O作A'H⊥MN于点H,OD⊥A'C于点D.用含30°角的直角三角形的性质可得OD=A'H=A'N=MN=2可判定A′C与半圆相切;
    (2)当NA′与半圆相切时,可知ON⊥A′N,则可知α=45°,当O′在时,连接MO′,则可知NO′=MN,可求得∠MNO′=60°,可求得α=30°;
    (3)根据点A′的位置不同得到线段NO′与半圆O只有一个公共点N时α的取值范围是0°<α<30°或45°≤α<90°.
    【详解】
    发现:(1)过点O作OH⊥AB,垂足为H,如图1所示,

    ∵⊙O的半径为2,AB=2,
    ∴OH==
    在△BOH中,OH=1,BO=2
    ∴∠ABO=30°
    ∵图形沿BP折叠,得到点A的对称点A′.
    ∴∠OBA′=∠ABO=30°
    ∴∠ABA′=60°
    (2)过点O作OG⊥BP,垂足为G,如图2所示.

    ∵BA′与⊙O相切,∴OB⊥A′B.∴∠OBA′=90°.
    ∵∠OBH=30°,∴∠ABA′=120°.
    ∴∠A′BP=∠ABP=60°.
    ∴∠OBP=30°.∴OG=OB=1.∴BG=.
    ∵OG⊥BP,∴BG=PG=.
    ∴BP=2.∴折痕的长为2
    拓展:(1)相切.
    分别过A'、O作A'H⊥MN于点H,OD⊥A'C于点D.如图3所示,
    ∵A'C∥MN
    ∴四边形A'HOD是矩形
    ∴A'H=O
    ∵α=15°∴∠A'NH=30
    ∴OD=A'H=A'N=MN=2
    ∴A'C与半圆
    (2)当NA′与半圆O相切时,则ON⊥NA′,
    ∴∠ONA′=2α=90°,
    ∴α=45

    当O′在上时,连接MO′,则可知NO′=MN,
    ∴∠O′MN=0°
    ∴∠MNO′=60°,
    ∴α=30°,
    故答案为:45°;30°.
    (3)∵点P,M不重合,∴α>0,
    由(2)可知当α增大到30°时,点O′在半圆上,
    ∴当0°<α<30°时点O′在半圆内,线段NO′与半圆只有一个公共点B;
    当α增大到45°时NA′与半圆相切,即线段NO′与半圆只有一个公共点B.
    当α继续增大时,点P逐渐靠近点N,但是点P,N不重合,
    ∴α<90°,
    ∴当45°≤α<90°线段BO′与半圆只有一个公共点B.
    综上所述0°<α<30°或45°≤α<90°.
    【点睛】
    本题考查了切线的性质、垂径定理、勾股定理、三角函数的定义、30°角所对的直角边等于斜边的一半、翻折问题等知识,正确的作出辅助线是解题的关键.
    24、(1);(2)
    【解析】
    试题分析:(1)利用概率公式直接计算即可;
    (2)画出树状图得到所有可能的结果,再找到回答正确的数目即可求出小丽回答正确的概率.
    试题解析:
    (1)∵对第二个字是选“重”还是选“穷”难以抉择,∴若随机选择其中一个正确的概率=,故答案为;
    (2)画树形图得:

    由树状图可知共有4种可能结果,其中正确的有1种,所以小丽回答正确的概率=.
    考点:列表法与树状图法;概率公式.
    25、2+1
    【解析】
    根据特殊角的三角函数值、零指数幂的性质、负指数幂的性质以及绝对值的性质分别化简各项后,再根据实数的运算法则计算即可求解.
    【详解】
    原式=-1+3+
    = -1+3+
    =2+1.
    【点睛】
    本题主要考查了实数运算,根据特殊角的三角函数值、零指数幂的性质、负指数幂的性质以及绝对值的性质正确化简各数是解题关键.
    26、 (1)见解析;(2)见解析
    【解析】
    分析:(1)由两组对边分别平行的四边形是平行四边形,得到是平行四边形.
    再由平行线分线段成比例定理得到:, ,=,即可得到结论;
    (2)连接,与交于点.由菱形的性质得到⊥,进而得到 ,,即有,得到△∽△,由相似三角形的性质即可得到结论.
    详解:(1)∵ ∥∥,∴四边形是平行四边形.
    ∵∥,∴.
    同理 .
    得:=
    ∵,∴.
    ∴四边形是菱形.
    (2)连接,与交于点.
    ∵四边形是菱形,∴⊥.
    得 .同理.
    ∴.
    又∵是公共角,∴△∽△.
    ∴.
    ∴.

    点睛:本题主要考查了菱形的判定和性质以及相似三角形的判定与性质.灵活运用菱形的判定与性质是解题的关键.
    27、(1)10、0.28、1;(2)见解析;(3)6.4本;(4)264名;
    【解析】
    (1)根据百分比=计算即可;
    (2)求出a组人数,画出直方图即可;
    (3)根据平均数的定义计算即可;
    (4)利用样本估计总体的思想解决问题即可;
    【详解】
    (1)a=50×0.2=10、b=14÷50=0.28、c=50÷50=1;
    (2)补全图形如下:

    (3)所有被调查学生课外阅读的平均本数==6.4(本)
    (4)该校八年级共有600名学生,该校八年级学生课外阅读7本和8本的总人数有600×=264(名).
    【点睛】
    本题考查频数分布直方图、样本估计总体等知识,解题的关键是熟练掌握基本概念,灵活运用所学知识解决问题,属于中考常考题型.

    相关试卷

    2023年浙江省台州市温岭市中考数学一模试卷(含解析):

    这是一份2023年浙江省台州市温岭市中考数学一模试卷(含解析),共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023年浙江省台州市温岭市中考数学一模试卷(含解析):

    这是一份2023年浙江省台州市温岭市中考数学一模试卷(含解析),共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    浙江省台州温岭市第三中学2022年中考数学对点突破模拟试卷含解析:

    这是一份浙江省台州温岭市第三中学2022年中考数学对点突破模拟试卷含解析,共18页。试卷主要包含了函数y=中自变量x的取值范围是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map