|试卷下载
搜索
    上传资料 赚现金
    云南省玉溪市名校2022年中考数学最后一模试卷含解析
    立即下载
    加入资料篮
    云南省玉溪市名校2022年中考数学最后一模试卷含解析01
    云南省玉溪市名校2022年中考数学最后一模试卷含解析02
    云南省玉溪市名校2022年中考数学最后一模试卷含解析03
    还剩25页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    云南省玉溪市名校2022年中考数学最后一模试卷含解析

    展开
    这是一份云南省玉溪市名校2022年中考数学最后一模试卷含解析,共28页。试卷主要包含了下列图形不是正方体展开图的是,1﹣的相反数是等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    请考生注意:
    1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
    2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.某药品经过两次降价,每瓶零售价由168元降为108元,已知两次降价的百分率相同,设每次降价的百分率为x,根据题意列方程得(  )
    A.168(1﹣x)2=108 B.168(1﹣x2)=108
    C.168(1﹣2x)=108 D.168(1+x)2=108
    2.某工程队开挖一条480米的隧道,开工后,每天比原计划多挖20米,结果提前4天完成任务,若设原计划每天挖米,那么求时所列方程正确的是( )
    A. B.
    C. D.
    3.某市公园的东、西、南、北方向上各有一个入口,周末佳佳和琪琪随机从一个入口进入该公园游玩,则佳佳和琪琪恰好从同一个入口进入该公园的概率是( )
    A. B. C. D.
    4.下列图形不是正方体展开图的是(  )
    A. B.
    C. D.
    5.1﹣的相反数是(  )
    A.1﹣ B.﹣1 C. D.﹣1
    6.小明和小张两人练习电脑打字,小明每分钟比小张少打6个字,小明打120个字所用的时间和小张打180个字所用的时间相等.设小明打字速度为x个/分钟,则列方程正确的是(  )
    A. B. C. D.
    7.在下列条件中,能够判定一个四边形是平行四边形的是( )
    A.一组对边平行,另一组对边相等
    B.一组对边相等,一组对角相等
    C.一组对边平行,一条对角线平分另一条对角线
    D.一组对边相等,一条对角线平分另一条对角线
    8.如图,水平的讲台上放置的圆柱体笔筒和正方体粉笔盒,其左视图是(  )

    A. B.
    C. D.
    9.某几何体由若干个大小相同的小正方体搭成,其主视图与左视图如图所示,则搭成这个几何体的小正方体最少有(  )

    A.4个 B.5个 C.6个 D.7个
    10.如图,在△ABC中,∠ACB=90°, ∠ABC=60°, BD平分∠ABC ,P点是BD的中点,若AD=6, 则CP的长为( )

    A.3.5 B.3 C.4 D.4.5
    11.如图,AB是⊙O的切线,半径OA=2,OB交⊙O于C,∠B=30°,则劣弧的长是(  )

    A.π B. C.π D.π
    12.下列二次根式中,是最简二次根式的是(  )
    A. B. C. D.
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.如图,正方形ABCD中,AB=3,以B为圆心,AB长为半径画圆B,点P在圆B上移动,连接AP,并将AP绕点A逆时针旋转90°至Q,连接BQ,在点P移动过程中,BQ长度的最小值为_____.

    14.如图,在矩形ABCD中,点E是CD的中点,点F是BC上一点,且FC=2BF,连接AE,EF.若AB=2,AD=3,则tan∠AEF的值是_____.

    15.如图,正五边形ABCDE和正三角形AMN都是⊙O的内接多边形,则∠BOM=_______.

    16.如图,在△ABC中,AD、BE分别是BC、AC两边中线,则=_____.

    17.计算:
    (1)()2=_____;
    (2) =_____.
    18.|-3|=_________;
    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)已知抛物线经过点,.把抛物线与线段围成的封闭图形记作.
    (1)求此抛物线的解析式;
    (2)点为图形中的抛物线上一点,且点的横坐标为,过点作轴,交线段于点.当为等腰直角三角形时,求的值;
    (3)点是直线上一点,且点的横坐标为,以线段为边作正方形,且使正方形与图形在直线的同侧,当,两点中只有一个点在图形的内部时,请直接写出的取值范围.

    20.(6分)图 1 和图 2 中,优弧纸片所在⊙O 的半径为 2,AB=2 ,点 P为优弧上一点(点 P 不与 A,B 重合),将图形沿 BP 折叠,得到点 A 的对称点 A′.

    发现:
    (1)点 O 到弦 AB 的距离是 ,当 BP 经过点 O 时,∠ABA′= ;
    (2)当 BA′与⊙O 相切时,如图 2,求折痕的长.
    拓展:把上图中的优弧纸片沿直径 MN 剪裁,得到半圆形纸片,点 P(不与点 M, N 重合)为半圆上一点,将圆形沿 NP 折叠,分别得到点 M,O 的对称点 A′, O′,设∠MNP=α.
    (1)当α=15°时,过点 A′作 A′C∥MN,如图 3,判断 A′C 与半圆 O 的位置关系,并说明理由;
    (2)如图 4,当α= °时,NA′与半圆 O 相切,当α= °时,点 O′落在上.
    (3)当线段 NO′与半圆 O 只有一个公共点 N 时,直接写出β的取值范围.
    21.(6分)随着互联网的发展,同学们的学习习惯也有了改变,一些同学在做题遇到困难时,喜欢上网查找答案.针对这个问题,某校调查了部分学生对这种做法的意见(分为:赞成、无所谓、反对),并将调查结果绘制成图1和图2两个不完整的统计图.

    请根据图中提供的信息,解答下列问题:此次抽样调查中,共调查了多少名学生?将图1补充完整;求出扇形统计图中持“反对”意见的学生所在扇形的圆心角的度数;根据抽样调查结果,请你估计该校1500名学生中有多少名学生持“无所谓”意见.
    22.(8分)某校为选拔一名选手参加“美丽邵阳,我为家乡做代言”主题演讲比赛,经研究,按图所示的项目和权数对选拔赛参赛选手进行考评(因排版原因统计图不完整).下表是李明、张华在选拔赛中的得分情况:
    项目
    选手
    服装
    普通话
    主题
    演讲技巧
    李明
    85
    70
    80
    85
    张华
    90
    75
    75
    80
    结合以上信息,回答下列问题:求服装项目的权数及普通话项目对应扇形的圆心角大小;求李明在选拔赛中四个项目所得分数的众数和中位数;根据你所学的知识,帮助学校在李明、张华两人中选择一人参加“美丽邵阳,我为家乡做代言”主题演讲比赛,并说明理由.

    23.(8分)某初级中学正在展开“文明城市创建人人参与,志愿服务我当先行”的“创文活动”为了了解该校志愿者参与服务情况,现对该校全体志愿者进行随机抽样调查.根据调查数据绘制了如下所示不完整统计图.条形统计图中七年级、八年级、九年级、教师分别指七年级、八年级、九年级、教师志愿者中被抽到的志愿者,扇形统计图中的百分数指的是该年级被抽到的志愿者数与样本容量的比.
    请补全条形统计图;若该校共有志愿者600人,则该校九年级大约有多少志愿者?
    24.(10分) “食品安全”受到全社会的广泛关注,我区兼善中学对部分学生就食品安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面的两幅尚不完整的统计图,请你根据统计图中所提供的信息解答下列问题:

    (1)接受问卷调查的学生共有   人,扇形统计图中“基本了解”部分所对应扇形的圆心角为   °;
    (2)请补全条形统计图;
    (3)若对食品安全知识达到“了解”程度的学生中,男、女生的比例恰为2:3,现从中随机抽取2人参加食品安全知识竞赛,请用树状图或列表法求出恰好抽到1个男生和1个女生的概率.
    25.(10分)如图,两座建筑物的水平距离为.从点测得点的仰角为53° ,从点测得点的俯角为37° ,求两座建筑物的高度(参考数据:

    26.(12分)如图,在矩形ABCD中,AB=3,AD=4,P沿射线BD运动,连接AP,将线段AP绕点P顺时针旋转90°得线段PQ.
    (1)当点Q落到AD上时,∠PAB=____°,PA=_____,长为_____;
    (2)当AP⊥BD时,记此时点P为P0,点Q为Q0,移动点P的位置,求∠QQ0D的大小;
    (3)在点P运动中,当以点Q为圆心,BP为半径的圆与直线BD相切时,求BP的长度;
    (4)点P在线段BD上,由B向D运动过程(包含B、D两点)中,求CQ的取值范围,直接写出结果.

    27.(12分)某校组织了一次初三科技小制作比赛,有A.B.C,D四个班共提供了100件参赛作品. C班提供的
    参赛作品的获奖率为50%,其他几个班的参赛作品情况及获奖情况绘制在下列图l和图2两幅尚不完整的统
    计图中 .

    (1)B班参赛作品有多少件?
    (2)请你将图②的统计图补充完整;
    (3)通过计算说明,哪个班的获奖率高?
    (4)将写有A,B,C,D四个字母的完全相同的卡片放入箱中,从中一次随机抽出两张卡片,求抽到A,B两班的概率 .



    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、A
    【解析】
    设每次降价的百分率为x,根据降价后的价格=降价前的价格(1-降价的百分率),则第一次降价后的价格是168(1-x),第二次后的价格是168(1-x)2,据此即可列方程求解.
    【详解】
    设每次降价的百分率为x,
    根据题意得:168(1-x)2=1.
    故选A.
    【点睛】
    此题主要考查了一元二次方程的应用,关键是根据题意找到等式两边的平衡条件,这种价格问题主要解决价格变化前后的平衡关系,列出方程即可.
    2、C
    【解析】
    本题的关键描述语是:“提前1天完成任务”;等量关系为:原计划用时−实际用时=1.
    【详解】
    解:原计划用时为:,实际用时为:.
    所列方程为:,
    故选C.
    【点睛】
    本题考查列分式方程,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.
    3、B
    【解析】
    首先根据题意画出树状图,然后由树状图求得所有等可能的结果,可求得佳佳和琪琪恰好从同一个入口进入该公园的情况,再利用概率公式求解即可求得答案.
    【详解】
    画树状图如下:

    由树状图可知,共有16种等可能结果,其中佳佳和琪琪恰好从同一个入口进入该公园的有4种等可能结果,
    所以佳佳和琪琪恰好从同一个入口进入该公园的概率为,
    故选B.
    【点睛】
    本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.
    4、B
    【解析】
    由平面图形的折叠及正方体的展开图解题.
    【详解】
    A、C、D经过折叠均能围成正方体,B折叠后上边没有面,不能折成正方体.
    故选B.
    【点睛】
    此题主要考查平面图形的折叠及正方体的展开图,熟练掌握,即可解题.
    5、B
    【解析】
    根据相反数的的定义解答即可.
    【详解】
    根据a的相反数为-a即可得,1﹣的相反数是﹣1.
    故选B.
    【点睛】
    本题考查了相反数的定义,熟知相反数的定义是解决问题的关键.
    6、C
    【解析】
    解:因为设小明打字速度为x个/分钟,所以小张打字速度为(x+6)个/分钟,根据关系:小明打120个字所用的时间和小张打180个字所用的时间相等,
    可列方程得,
    故选C.
    【点睛】
    本题考查列分式方程解应用题,找准题目中的等量关系,难度不大.
    7、C
    【解析】
    A、错误.这个四边形有可能是等腰梯形.
    B、错误.不满足三角形全等的条件,无法证明相等的一组对边平行.
    C、正确.可以利用三角形全等证明平行的一组对边相等.故是平行四边形.
    D、错误.不满足三角形全等的条件,无法证明相等的一组对边平行.
    故选C.
    8、C
    【解析】
    根据左视图是从物体的左面看得到的视图解答即可.
    【详解】
    解:水平的讲台上放置的圆柱形笔筒和正方体形粉笔盒,其左视图是一个含虚线的
    长方形,
    故选C.
    【点睛】
    本题考查的是几何体的三视图,左视图是从物体的左面看得到的视图.
    9、B
    【解析】
    由主视图和左视图确定俯视图的形状,再判断最少的正方体的个数.
    【详解】由主视图和左视图可确定所需正方体个数最少时俯视图(数字为该位置小正方体的个数)为:

    则搭成这个几何体的小正方体最少有5个,
    故选B.
    【点睛】本题考查了由三视图判断几何体,根据主视图和左视图画出所需正方体个数最少的俯视图是关键.
    【详解】
    请在此输入详解!
    【点睛】
    请在此输入点睛!
    10、B
    【解析】
    解:∵∠ACB=90°,∠ABC=60°,
    ∴∠A=10°,
    ∵BD平分∠ABC,
    ∴∠ABD=∠ABC=10°,
    ∴∠A=∠ABD,
    ∴BD=AD=6,
    ∵在Rt△BCD中,P点是BD的中点,
    ∴CP=BD=1.
    故选B.
    11、C
    【解析】
    由切线的性质定理得出∠OAB=90°,进而求出∠AOB=60°,再利用弧长公式求出即可.
    【详解】
    ∵AB是⊙O的切线,
    ∴∠OAB=90°,
    ∵半径OA=2,OB交⊙O于C,∠B=30°,
    ∴∠AOB=60°,
    ∴劣弧ACˆ的长是:=,
    故选:C.
    【点睛】
    本题考查了切线的性质,圆周角定理,弧长的计算,解题的关键是先求出角度再用弧长公式进行计算.
    12、B
    【解析】
    根据最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式判断即可.
    【详解】
    A、 =4,不符合题意;
    B、是最简二次根式,符合题意;
    C、=,不符合题意;
    D、=,不符合题意;
    故选B.
    【点睛】
    本题考查最简二次根式的定义.最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、3﹣1
    【解析】
    通过画图发现,点Q的运动路线为以D为圆心,以1为半径的圆,可知:当Q在对角线BD上时,BQ最小,先证明△PAB≌△QAD,则QD=PB=1,再利用勾股定理求对角线BD的长,则得出BQ的长.
    【详解】
    如图,当Q在对角线BD上时,BQ最小.
    连接BP,由旋转得:AP=AQ,∠PAQ=90°,∴∠PAB+∠BAQ=90°.
    ∵四边形ABCD为正方形,∴AB=AD,∠BAD=90°,∴∠BAQ+∠DAQ=90°,∴∠PAB=∠DAQ,∴△PAB≌△QAD,∴QD=PB=1.在Rt△ABD中,∵AB=AD=3,由勾股定理得:BD=,∴BQ=BD﹣QD=3﹣1,即BQ长度的最小值为(3﹣1).

    故答案为3﹣1.
    【点睛】
    本题是圆的综合题.考查了正方形的性质、旋转的性质和最小值问题,寻找点Q的运动轨迹是本题的关键,通过证明两三角形全等求出BQ长度的最小值最小值.
    14、1.
    【解析】
    连接AF,由E是CD的中点、FC=2BF以及AB=2、AD=3可知AB=FC,BF=CE,则可证△ABF≌△FCE,进一步可得到△AFE是等腰直角三角形,则∠AEF=45°.
    【详解】
    解:连接AF,

    ∵E是CD的中点,
    ∴CE=,AB=2,
    ∵FC=2BF,AD=3,
    ∴BF=1,CF=2,
    ∴BF=CE,FC=AB,
    ∵∠B=∠C=90°,
    ∴△ABF≌△FCE,
    ∴AF=EF,∠BAF=∠CFE,∠AFB=∠FEC,
    ∴∠AFE=90°,
    ∴△AFE是等腰直角三角形,
    ∴∠AEF=45°,
    ∴tan∠AEF=1.
    故答案为:1.
    【点睛】
    本题结合三角形全等考查了三角函数的知识.
    15、48°
    【解析】
    连接OA,分别求出正五边形ABCDE和正三角形AMN的中心角,结合图形计算即可.
    【详解】
    连接OA,

    ∵五边形ABCDE是正五边形,
    ∴∠AOB==72°,
    ∵△AMN是正三角形,
    ∴∠AOM==120°,
    ∴∠BOM=∠AOM-∠AOB=48°,
    故答案为48°.
    点睛:本题考查的是正多边形与圆的有关计算,掌握正多边形的中心角的计算公式是解题的关键.
    16、
    【解析】
    利用三角形中位线的性质定理以及相似三角形的性质即可解决问题;
    【详解】
    ∵AE=EC,BD=CD,
    ∴DE∥AB,DE=AB,
    ∴△EDC∽△ABC,
    ∴=,
    故答案是:.
    【点睛】
    考查相似三角形的判定和性质、三角形中位线定理等知识,解题的关键是熟练掌握三角形中位线定理.
    17、
    【解析】
    (1)直接利用分式乘方运算法则计算得出答案;
    (2)直接利用分式除法运算法则计算得出答案.
    【详解】
    (1)()2=;
    故答案为;
    (2) ==.
    故答案为.
    【点睛】
    此题主要考查了分式的乘除法运算,正确掌握运算法则是解题关键.
    18、1
    【解析】
    分析:根据负数的绝对值等于这个数的相反数,即可得出答案.
    解答:解:|-1|=1.
    故答案为1.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、(1);(2)-2或-1;(3)-1≤n<1或1 【解析】
    (1)把点,代入抛物线得关于a,b的二元一次方程组,解出这个方程组即可;
    (2)根据题意画出图形,分三种情况进行讨论;
    (3)作出图形,把其中一点恰好在抛物线上时算出,再确定其取值范围.
    【详解】
    解:(1)依题意,得:

    解得:
    ∴此抛物线的解析式 ;
    (2)设直线AB的解析式为y=kx+b,依题意得:

    解得:
    ∴直线AB的解析式为y=-x.
    ∵点P的横坐标为m,且在抛物线上,
    ∴点P的坐标为(m, )
    ∵轴,且点Q有线段AB上,
    ∴点Q的坐标为(m,-m)
    ① 当PQ=AP时,如图,∵∠APQ=90°,轴,

    解得,m=-2或m=1(舍去)

    ② 当AQ=AP时,如图,过点A作AC⊥PQ于C,

    ∵为等腰直角三角形,
    ∴2AC=PQ

    即m=1(舍去)或m=-1.
    综上所述,当为等腰直角三角形时,求的值是-2惑-1.;
    (3)①如图,当n<1时,依题意可知C,D的横坐标相同,CE=2(1-n)
    ∴点E的坐标为(n,n-2)
    当点E恰好在抛物线上时,解得,n=-1.
    ∴此时n的取值范围-1≤n<1.

    ②如图,当n>1时,依题可知点E的坐标为(2-n,-n)
    当点E在抛物线上时,
    解得,n=3或n=1.
    ∵n>1.
    ∴n=3.
    ∴此时n的取值范围1 综上所述,n的取值范围为-1≤n<1或1
    【点睛】
    本题主要考查了二次函数与几何图形的综合应用,掌握相关几何图形的性质和二次函数的性质是解题的关键.
    20、发现:(1)1,60°;(2)2;拓展:(1)相切,理由详见解析;(2)45°;30°;(3)0°<α<30°或 45°≤α<90°.
    【解析】
    发现:(1)利用垂径定理和勾股定理即可求出点O到AB的距离;利用锐角三角函数的定义及轴对称性就可求出∠ABA′.
    (2)根据切线的性质得到∠OBA′=90°,从而得到∠ABA′=120°,就可求出∠ABP,进而求出∠OBP=30°.过点O作OG⊥BP,垂足为G,容易求出OG、BG的长,根据垂径定理就可求出折痕的长.
    拓展:(1)过A'、O作A'H⊥MN于点H,OD⊥A'C于点D.用含30°角的直角三角形的性质可得OD=A'H=A'N=MN=2可判定A′C与半圆相切;
    (2)当NA′与半圆相切时,可知ON⊥A′N,则可知α=45°,当O′在时,连接MO′,则可知NO′=MN,可求得∠MNO′=60°,可求得α=30°;
    (3)根据点A′的位置不同得到线段NO′与半圆O只有一个公共点N时α的取值范围是0°<α<30°或45°≤α<90°.
    【详解】
    发现:(1)过点O作OH⊥AB,垂足为H,如图1所示,

    ∵⊙O的半径为2,AB=2,
    ∴OH==
    在△BOH中,OH=1,BO=2
    ∴∠ABO=30°
    ∵图形沿BP折叠,得到点A的对称点A′.
    ∴∠OBA′=∠ABO=30°
    ∴∠ABA′=60°
    (2)过点O作OG⊥BP,垂足为G,如图2所示.

    ∵BA′与⊙O相切,∴OB⊥A′B.∴∠OBA′=90°.
    ∵∠OBH=30°,∴∠ABA′=120°.
    ∴∠A′BP=∠ABP=60°.
    ∴∠OBP=30°.∴OG=OB=1.∴BG=.
    ∵OG⊥BP,∴BG=PG=.
    ∴BP=2.∴折痕的长为2
    拓展:(1)相切.
    分别过A'、O作A'H⊥MN于点H,OD⊥A'C于点D.如图3所示,
    ∵A'C∥MN
    ∴四边形A'HOD是矩形
    ∴A'H=O
    ∵α=15°∴∠A'NH=30
    ∴OD=A'H=A'N=MN=2
    ∴A'C与半圆
    (2)当NA′与半圆O相切时,则ON⊥NA′,
    ∴∠ONA′=2α=90°,
    ∴α=45

    当O′在上时,连接MO′,则可知NO′=MN,
    ∴∠O′MN=0°
    ∴∠MNO′=60°,
    ∴α=30°,
    故答案为:45°;30°.
    (3)∵点P,M不重合,∴α>0,
    由(2)可知当α增大到30°时,点O′在半圆上,
    ∴当0°<α<30°时点O′在半圆内,线段NO′与半圆只有一个公共点B;
    当α增大到45°时NA′与半圆相切,即线段NO′与半圆只有一个公共点B.
    当α继续增大时,点P逐渐靠近点N,但是点P,N不重合,
    ∴α<90°,
    ∴当45°≤α<90°线段BO′与半圆只有一个公共点B.
    综上所述0°<α<30°或45°≤α<90°.
    【点睛】
    本题考查了切线的性质、垂径定理、勾股定理、三角函数的定义、30°角所对的直角边等于斜边的一半、翻折问题等知识,正确的作出辅助线是解题的关键.
    21、200名;见解析;;(4)375.
    【解析】
    根据统计图中的数据可以求得此次抽样调查中,共调查了多少名学生;
    根据中的结果和统计图中的数据可以求得反对的人数,从而可以将条形统计图补充完整;
    根据统计图中的数据可以求得扇形统计图中持“反对”意见的学生所在扇形的圆心角的度数;
    根据统计图中的数据可以估计该校1500名学生中有多少名学生持“无所谓”意见.
    【详解】
    解:,
    答:此次抽样调查中,共调查了200名学生;
    反对的人数为:,
    补全的条形统计图如右图所示;
    扇形统计图中持“反对”意见的学生所在扇形的圆心角的度数是:;
    (4),
    答:该校1500名学生中有375名学生持“无所谓”意见.
    【点睛】
    本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
    22、(1)服装项目的权数是10%,普通话项目对应扇形的圆心角是72°;(2)众数是85,中位数是82.5;(3)选择李明参加“美丽邵阳,我为家乡做代言”主题演讲比赛,理由见解析.
    【解析】
    (1)根据扇形图用1减去其它项目的权重可求得服装项目的权重,用360度乘以普通话项目的权重即可求得普通话项目对应扇形的圆心角大小;
    (2)根据统计表中的数据可以求得李明在选拔赛中四个项目所得分数的众数和中位数;
    (3)根据统计图和统计表中的数据可以分别计算出李明和张华的成绩,然后比较大小,即可解答本题.
    【详解】
    (1)服装项目的权数是:1﹣20%﹣30%﹣40%=10%,
    普通话项目对应扇形的圆心角是:360°×20%=72°;
    (2)明在选拔赛中四个项目所得分数的众数是85,中位数是:(80+85)÷2=82.5;
    (3)李明得分为:85×10%+70×20%+80×30%+85×40%=80.5,
    张华得分为:90×10%+75×20%+75×30%+80×40%=78.5,
    ∵80.5>78.5,
    ∴李明的演讲成绩好,
    故选择李明参加“美丽邵阳,我为家乡做代言”主题演讲比赛.
    【点睛】
    本题考查了扇形统计图、中位数、众数、加权平均数,明确题意,结合统计表和统计图找出所求问题需要的条件,运用数形结合的思想进行解答是解题的关键.
    23、(1)作图见解析;(2)1.
    【解析】
    试题分析:(1)根据百分比=计算即可解决问题,求出八年级、九年级、被抽到的志愿者人数画出条形图即可;
    (2)用样本估计总体的思想,即可解决问题;
    试题解析:解:(1)由题意总人数=20÷40%=50人,八年级被抽到的志愿者:50×30%=15人
    九年级被抽到的志愿者:50×20%=10人,条形图如图所示:

    (2)该校共有志愿者600人,则该校九年级大约有600×20%=1人.
    答:该校九年级大约有1名志愿者.
    24、(1)60,1°.(2)补图见解析;(3)
    【解析】
    (1)根据了解很少的人数和所占的百分百求出抽查的总人数,再用“基本了解”所占的百分比乘以360°,即可求出“基本了解”部分所对应扇形的圆心角的度数;
    (2)用调查的总人数减去“基本了解”“了解很少”和“基本了解”的人数,求出了解的人数,从而补全统计图;
    (3)根据题意先画出树状图,再根据概率公式即可得出答案.
    【详解】
    (1)接受问卷调查的学生共有30÷50%=60(人),
    扇形统计图中“基本了解”部分所对应扇形的圆心角为360°×=1°,
    故答案为60,1.
    (2)了解的人数有:60﹣15﹣30﹣10=5(人),补图如下:

    (3)画树状图得:

    ​∵共有20种等可能的结果,恰好抽到1个男生和1个女生的有12种情况,
    ∴恰好抽到1个男生和1个女生的概率为=.
    【点睛】
    此题考查了条形统计图、扇形统计图以及用列表法或树状图法求概率,读懂题意,根据题意求出总人数是解题的关键;概率=所求情况数与总情况数之比.
    25、建筑物的高度为.建筑物的高度为.
    【解析】
    分析:过点D作DE⊥AB于于E,则DE=BC=60m.在Rt△ABC中,求出AB.在Rt△ADE中求出AE即可解决问题.
    详解:过点D作DE⊥AB于于E,则DE=BC=60m,
    在Rt△ABC中,tan53°==,∴AB=80(m).
    在Rt△ADE中,tan37°==,∴AE=45(m),
    ∴BE=CD=AB﹣AE=35(m).
    答:两座建筑物的高度分别为80m和35m.

    点睛:本题考查的是解直角三角形的应用﹣仰角俯角问题,根据题意作出辅助线,构造出直角三角形是解答此题的关键.
    26、 (1)45,,π;(2)满足条件的∠QQ0D为45°或135°;(3)BP的长为或;(4)≤CQ≤7.
    【解析】
    (1)由已知,可知△APQ为等腰直角三角形,可得∠PAB,再利用三角形相似可得PA,及弧AQ的长度;
    (2)分点Q在BD上方和下方的情况讨论求解即可.
    (3)分别讨论点Q在BD上方和下方的情况,利用切线性质,在由(2)用BP0表示BP,由射影定理计算即可;
    (4)由(2)可知,点Q在过点Qo,且与BD夹角为45°的线段EF上运动,有图形可知,当点Q运动到点E时,CQ最长为7,再由垂线段最短,应用面积法求CQ最小值.
    【详解】
    解:(1)如图,过点P做PE⊥AD于点E

    由已知,AP=PQ,∠APQ=90°
    ∴△APQ为等腰直角三角形
    ∴∠PAQ=∠PAB=45°
    设PE=x,则AE=x,DE=4﹣x
    ∵PE∥AB
    ∴△DEP∽△DAB
    ∴=
    ∴=
    解得x=
    ∴PA=PE=
    ∴弧AQ的长为•2π•=π.
    故答案为45,,π.
    (2)如图,过点Q做QF⊥BD于点F

    由∠APQ=90°,
    ∴∠APP0+∠QPD=90°
    ∵∠P0AP+∠APP0=90°
    ∴∠QPD=∠P0AP
    ∵AP=PQ
    ∴△APP0≌△PQF
    ∴AP0=PF,P0P=QF
    ∵AP0=P0Q0
    ∴Q0D=P0P
    ∴QF=FQ0
    ∴∠QQ0D=45°.
    当点Q在BD的右下方时,同理可得∠PQ0Q=45°,
    此时∠QQ0D=135°,

    综上所述,满足条件的∠QQ0D为45°或135°.
    (3)如图当点Q直线BD上方,当以点Q为圆心,BP为半径的圆与直线BD相切时
    过点Q做QF⊥BD于点F,则QF=BP

    由(2)可知,PP0=BP
    ∴BP0=BP
    ∵AB=3,AD=4
    ∴BD=5
    ∵△ABP0∽△DBA
    ∴AB2=BP0•BD
    ∴9=BP×5
    ∴BP=
    同理,当点Q位于BD下方时,可求得BP=
    故BP的长为或
    (4)由(2)可知∠QQ0D=45°

    则如图,点Q在过点Q0,且与BD夹角为45°的线段EF上运动,
    当点P与点B重合时,点Q与点F重合,此时,CF=4﹣3=1
    当点P与点D重合时,点Q与点E重合,此时,CE=4+3=7
    ∴EF===5
    过点C做CH⊥EF于点H
    由面积法可知
    CH===
    ∴CQ的取值范围为:≤CQ≤7
    【点睛】
    本题是几何综合题,考查了三角形全等、勾股定理、切线性质以及三角形相似的相关知识,应用了分类讨论和数形结合的数学思想.
    27、(1)25件;(2)见解析;(3)B班的获奖率高;(4).
    【解析】
    试题分析:(1)直接利用扇形统计图中百分数,进而求出B班参赛作品数量;
    (2)利用C班提供的参赛作品的获奖率为50%,结合C班参赛数量得出获奖数量;
    (3)分别求出各班的获奖百分率,进而求出答案;
    (4)利用树状统计图得出所有符合题意的答案进而求出其概率.
    试题解析:(1)由题意可得:100×(1﹣35%﹣20%﹣20%)=25(件),
    答:B班参赛作品有25件;
    (2)∵C班提供的参赛作品的获奖率为50%,∴C班的参赛作品的获奖数量为:100×20%×50%=10(件),
    如图所示:

    (3)A班的获奖率为:×100%=40%,B班的获奖率为:×100%=44%,
    C班的获奖率为:=50%;D班的获奖率为:×100%=40%,
    故C班的获奖率高;
    (4)如图所示:

    故一共有12种情况,符合题意的有2种情况,则从中一次随机抽出两张卡片,求抽到A、B两班的概率为:=.
    考点:1.列表法与树状图法;2.扇形统计图;3.条形统计图.

    相关试卷

    2024年云南省玉溪市易门县中考数学一模试卷(含解析): 这是一份2024年云南省玉溪市易门县中考数学一模试卷(含解析),共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023年云南省玉溪市江川区中考数学一模试卷(含解析): 这是一份2023年云南省玉溪市江川区中考数学一模试卷(含解析),共17页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023年云南省玉溪市中考数学一模试卷(含解析): 这是一份2023年云南省玉溪市中考数学一模试卷(含解析),共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map