新疆乌鲁木齐天山区重点达标名校2022年中考数学四模试卷含解析
展开2021-2022中考数学模拟试卷
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.小华在做解方程作业时,不小心将方程中的一个常数弄脏了而看不清楚,被弄脏的方程是 , 这该怎么办呢?他想了一想,然后看了一下书后面的答案,知道此方程的解是x=5,于是,他很快便补好了这个常数,并迅速地做完了作业。同学们,你能补出这个常数吗?它应该是( )
A.2 B.3 C.4 D.5
2.某校对初中学生开展的四项课外活动进行了一次抽样调查(每人只参加其中的一项活动),调查结果如图所示,根据图形所提供的样本数据,可得学生参加科技活动的频率是( )
A.0.15 B.0.2 C.0.25 D.0.3
3.某一公司共有51名员工(包括经理),经理的工资高于其他员工的工资,今年经理的工资从去年的200000元增加到225000元,而其他员工的工资同去年一样,这样,这家公司所有员工今年工资的平均数和中位数与去年相比将会( )
A.平均数和中位数不变 B.平均数增加,中位数不变
C.平均数不变,中位数增加 D.平均数和中位数都增大
4.函数的图像位于( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
5.计算的正确结果是( )
A. B.- C.1 D.﹣1
6.在-,,0,-2这四个数中,最小的数是( )
A. B. C.0 D.-2
7.为了开展阳光体育活动,某班计划购买毽子和跳绳两种体育用品,共花费35元,毽子单价3元,跳绳单价5元,购买方案有( )
A.1种 B.2种 C.3种 D.4种
8.如图是一个小正方体的展开图,把展开图折叠成小正方体后,有“我”字的一面相对面上的字是( )
A.国 B.厉 C.害 D.了
9.如图,以AD为直径的半圆O经过Rt△ABC斜边AB的两个端点,交直角边AC于点E;B、E是半圆弧的三等分点,的长为,则图中阴影部分的面积为( )
A. B. C. D.
10.实数a在数轴上的位置如图所示,则化简后为( )
A.7 B.﹣7 C.2a﹣15 D.无法确定
二、填空题(共7小题,每小题3分,满分21分)
11.将数字37000000用科学记数法表示为_____.
12.求1+2+22+23+…+22007的值,可令s=1+2+22+23+…+22007,则2s=2+22+23+24+…+22018,因此2s﹣s=22018﹣1,即s=22018﹣1,仿照以上推理,计算出1+3+32+33+…+32018的值为_____.
13.如图所示,矩形ABCD的顶点D在反比例函数(x<0)的图象上,顶点B,C在x轴上,对角线AC的延长线交y轴于点E,连接BE,△BCE的面积是6,则k=_____.
14.在一个不透明的口袋中装有4个红球和若干个白球,它们除颜色外其他完全相同,通过多次摸球试验后发现,摸到红球的频率稳定在25%附近,则口袋中白球可能有_____个.
15.如图,在△ABC中,DE∥BC,BF平分∠ABC,交DE的延长线于点F,若AD=1,BD=2,BC=4,则EF=________.
16.三个小伙伴各出资a元,共同购买了价格为b元的一个篮球,还剩下一点钱,则剩余金额为__元(用含a、b的代数式表示)
17.如图,若点 的坐标为 ,则 =________.
三、解答题(共7小题,满分69分)
18.(10分)已知:如图,四边形ABCD的对角线AC和BD相交于点E,AD=DC,DC2=DE•DB,求证:
(1)△BCE∽△ADE;
(2)AB•BC=BD•BE.
19.(5分)如图,一次函数y1=kx+b(k≠0)和反比例函数y2=(m≠0)的图象交于点A(-1,6),B(a,-2).求一次函数与反比例函数的解析式;根据图象直接写出y1>y2 时,x的取值范围.
20.(8分)如图,已知的直径,是的弦,过点作的切线交的延长线于点,过点作,垂足为,与交于点,设,的度数分别是,,且.
(1)用含的代数式表示;
(2)连结交于点,若,求的长.
21.(10分)已知,如图,直线MN交⊙O于A,B两点,AC是直径,AD平分∠CAM交⊙O于D,过D作DE⊥MN于E.
求证:DE是⊙O的切线;若DE=6cm,AE=3cm,求⊙O的半径.
22.(10分)(1)计算:﹣14+sin61°+()﹣2﹣(π﹣)1.
(2)解不等式组,并把它的解集在数轴上表示出来.
23.(12分)已知,抛物线L:y=x2+bx+c与x轴交于点A和点B(-3,0),与y轴交于点C(0,3).
(1)求抛物线L的顶点坐标和A点坐标.
(2)如何平移抛物线L得到抛物线L1,使得平移后的抛物线L1的顶点与抛物线L的顶点关于原点对称?
(3)将抛物线L平移,使其经过点C得到抛物线L2,点P(m,n)(m>0)是抛物线L2上的一点,是否存在点P,使得△PAC为等腰直角三角形,若存在,请直接写出抛物线L2的表达式,若不存在,请说明理由.
24.(14分)已知关于x的一元二次方程x2﹣(m+3)x+m+2=1.
(1)求证:无论实数m取何值,方程总有两个实数根;
(2)若方程两个根均为正整数,求负整数m的值.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、D
【解析】
设这个数是a,把x=1代入方程得出一个关于a的方程,求出方程的解即可.
【详解】
设这个数是a,
把x=1代入得:(-2+1)=1-,
∴1=1-,
解得:a=1.
故选:D.
【点睛】
本题主要考查对解一元一次方程,等式的性质,一元一次方程的解等知识点的理解和掌握,能得出一个关于a的方程是解此题的关键.
2、B
【解析】
读图可知:参加课外活动的人数共有(15+30+20+35)=100人,
其中参加科技活动的有20人,所以参加科技活动的频率是=0.2,
故选B.
3、B
【解析】
本题考查统计的有关知识,找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数,平均数是指在一组数据中所有数据之和再除以数据的个数.
【详解】
解:设这家公司除经理外50名员工的工资和为a元,则这家公司所有员工去年工资的平均数是元,今年工资的平均数是元,显然
;
由于这51个数据按从小到大的顺序排列的次序完全没有变化,所以中位数不变.
故选B.
【点睛】
本题主要考查了平均数,中位数的概念,要掌握这些基本概念才能熟练解题.同时注意到个别数据对平均数的影响较大,而对中位数和众数没影响.
4、D
【解析】
根据反比例函数中,当,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大,进而得出答案.
【详解】
解:函数的图象位于第四象限.
故选:D.
【点睛】
此题主要考查了反比例函数的性质,正确记忆反比例函数图象分布的象限是解题关键.
5、D
【解析】
根据有理数加法的运算方法,求出算式的正确结果是多少即可.
【详解】
原式
故选:D.
【点睛】
此题主要考查了有理数的加法的运算方法,要熟练掌握,解答此题的关键是要明确:
①同号相加,取相同符号,并把绝对值相加.②绝对值不等的异号加减,取绝对值较大的加
数符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得1.③一个数同
1相加,仍得这个数.
6、D
【解析】
根据正数大于0,负数小于0,正数大于一切负数,两个负数,绝对值大的反而小比较即可.
【详解】
在﹣,,0,﹣1这四个数中,﹣1<﹣<0<,
故最小的数为:﹣1.
故选D.
【点睛】
本题考查了实数的大小比较,解答本题的关键是熟练掌握实数的大小比较方法,特别是两个负数的大小比较.
7、B
【解析】
首先设毽子能买x个,跳绳能买y根,根据题意列方程即可,再根据二元一次方程求解.
【详解】
解:设毽子能买x个,跳绳能买y根,根据题意可得:
3x+5y=35,
y=7-x,
∵x、y都是正整数,
∴x=5时,y=4;
x=10时,y=1;
∴购买方案有2种.
故选B.
【点睛】
本题主要考查二元一次方程的应用,关键在于根据题意列方程.
8、A
【解析】
正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.
【详解】
∴有“我”字一面的相对面上的字是国.
故答案选A.
【点睛】
本题考查的知识点是专题:正方体相对两个面上的文字,解题的关键是熟练的掌握正方体相对两个面上的文字.
9、D
【解析】
连接BD,BE,BO,EO,先根据B、E是半圆弧的三等分点求出圆心角∠BOD的度数,再利用弧长公式求出半圆的半径R,再利用圆周角定理求出各边长,通过转化将阴影部分的面积转化为S△ABC﹣S扇形BOE,然后分别求出面积相减即可得出答案.
【详解】
解:连接BD,BE,BO,EO,
∵B,E是半圆弧的三等分点,
∴∠EOA=∠EOB=∠BOD=60°,
∴∠BAD=∠EBA=30°,
∴BE∥AD,
∵ 的长为 ,
∴
解得:R=4,
∴AB=ADcos30°= ,
∴BC=AB=,
∴AC=BC=6,
∴S△ABC=×BC×AC=××6=,
∵△BOE和△ABE同底等高,
∴△BOE和△ABE面积相等,
∴图中阴影部分的面积为:S△ABC﹣S扇形BOE=
故选:D.
【点睛】
本题主要考查弧长公式,扇形面积公式,圆周角定理等,掌握圆的相关性质是解题的关键.
10、C
【解析】
根据数轴上点的位置判断出a﹣4与a﹣11的正负,原式利用二次根式性质及绝对值的代数意义化简,去括号合并即可得到结果.
【详解】
解:根据数轴上点的位置得:5<a<10,
∴a﹣4>0,a﹣11<0,
则原式=|a﹣4|﹣|a﹣11|=a﹣4+a﹣11=2a﹣15,
故选:C.
【点睛】
此题考查了二次根式的性质与化简,以及实数与数轴,熟练掌握运算法则是解本题的关键.
二、填空题(共7小题,每小题3分,满分21分)
11、3.7×107
【解析】
根据科学记数法即可得到答案.
【详解】
数字37000000用科学记数法表示为3.7×107.
【点睛】
本题主要考查了科学记数法的基本概念,解本题的要点在于熟知科学记数法的相关知识.
12、
【解析】
仿照已知方法求出所求即可.
【详解】
令S=1+3+32+33+…+32018,则3S=3+32+33+…+32019,因此3S﹣S=32019﹣1,即S=.
故答案为:.
【点睛】
本题考查了有理数的混合运算,熟练掌握运算法则是解答本题的关键.
13、-1
【解析】
先设D(a,b),得出CO=-a,CD=AB=b,k=ab,再根据△BCE的面积是6,得出BC×OE=1,最后根据AB∥OE,得出,即BC•EO=AB•CO,求得ab的值即可.
【详解】
设D(a,b),则CO=-a,CD=AB=b,
∵矩形ABCD的顶点D在反比例函数y=(x<0)的图象上,
∴k=ab,
∵△BCE的面积是6,
∴×BC×OE=6,即BC×OE=1,
∵AB∥OE,
∴,即BC•EO=AB•CO,
∴1=b×(-a),即ab=-1,
∴k=-1,
故答案为-1.
【点睛】
本题主要考查了反比例函数系数k的几何意义,矩形的性质以及平行线分线段成比例定理的综合应用,能很好地考核学生分析问题,解决问题的能力.解题的关键是将△BCE的面积与点D的坐标联系在一起,体现了数形结合的思想方法.
14、1.
【解析】
由摸到红球的频率稳定在25%附近得出口袋中得到红色球的概率,进而求出白球个数即可.
【详解】
设白球个数为:x个,
∵摸到红色球的频率稳定在25%左右,
∴口袋中得到红色球的概率为25%,
∴=,
解得:x=1,
故白球的个数为1个.
故答案为:1.
【点睛】
此题主要考查了利用频率估计概率,根据大量反复试验下频率稳定值即概率得出是解题关键.
15、
【解析】
由DE∥BC可得出△ADE∽△ABC,根据相似三角形的性质和平行线的性质解答即可.
【详解】
∵DE∥BC,
∴∠F=∠FBC,
∵BF平分∠ABC,
∴∠DBF=∠FBC,
∴∠F=∠DBF,
∴DB=DF,
∵DE∥BC,
∴△ADE∽△ABC,
∴ ,即 ,
解得:DE= ,
∵DF=DB=2,
∴EF=DF-DE=2- = ,
故答案为.
【点睛】
此题考查相似三角形的判定和性质,关键是由DE∥BC可得出△ADE∽△ABC.
16、(3a﹣b)
【解析】解:由题意可得,剩余金额为:(3a-b)元,故答案为:(3a-b).
点睛:本题考查列代数式,解答本题的关键是明确题意,列出相应的代数式.
17、
【解析】
根据勾股定理,可得OA的长,根据正弦是对边比斜边,可得答案.
【详解】
如图,由勾股定理,得:OA==1.sin∠1=,故答案为.
三、解答题(共7小题,满分69分)
18、(1)见解析;(2)见解析.
【解析】
(1)由∠DAC=∠DCA,对顶角∠AED=∠BEC,可证△BCE∽△ADE.
(2)根据相似三角形判定得出△ADE∽△BDA,进而得出△BCE∽△BDA,利用相似三角形的性质解答即可.
【详解】
证明:(1)∵AD=DC,
∴∠DAC=∠DCA,
∵DC2=DE•DB,
∴=,∵∠CDE=∠BDC,
∴△CDE∽△BDC,
∴∠DCE=∠DBC,
∴∠DAE=∠EBC,
∵∠AED=∠BEC,
∴△BCE∽△ADE,
(2)∵DC2=DE•DB,AD=DC
∴AD2=DE•DB,
同法可得△ADE∽△BDA,
∴∠DAE=∠ABD=∠EBC,
∵△BCE∽△ADE,
∴∠ADE=∠BCE,
∴△BCE∽△BDA,
∴=,
∴AB•BC=BD•BE.
【点睛】
本题考查了相似三角形的判定与性质.关键是要懂得找相似三角形,利用相似三角形的性质求解.
19、(1)y1=-2x+4,y2=-;(2)x<-1或0
(1)把点A坐标代入反比例函数求出k的值,也就求出了反比例函数解析式,再把点B的坐标代入反比例函数解析式求出a的值,得到点B的坐标,然后利用待定系数法即可求出一次函数解析式;
(2)找出直线在一次函数图形的上方的自变量x的取值即可.
【详解】
解:(1)把点A(﹣1,6)代入反比例函数(m≠0)得:m=﹣1×6=﹣6,
∴.
将B(a,﹣2)代入得:,a=1,∴B(1,﹣2),将A(﹣1,6),B(1,﹣2)代入一次函数y1=kx+b得:,
∴,
∴;
(2)由函数图象可得:x<﹣1或0<x<1.
【点睛】
本题考查反比例函数与一次函数的交点问题,利用数形结合思想解题是本题的关键.
20、(1);(2)
【解析】
(1)连接OC,根据切线的性质得到OC⊥DE,可以证明AD∥OC,根据平行线的性质可得,则根据等腰三角形的性质可得,利用,化简计算即可得到答案;
(2)连接CF,根据,可得,利用中垂线和等腰三角形的性质可证四边形是平行四边形,得到△AOF为等边三角形,由并可得四边形是菱形,可证是等边三角形,有∠FAO=60°,再根据弧长公式计算即可.
【详解】
解:(1)如图示,连结,
∵是的切线,∴.
又,∴,
∴,
∴.
∵,
∴.∴.
∵,
∴.
∴,即.
(2)如图示,连结,
∵,,
∴,
∴,
∴,
∴,
∵,
∴四边形是平行四边形,
∵,
∴四边形是菱形,
∴,
∴是等边三角形,
∴,
∴,
∵,
∴的长.
【点睛】
本题考查的是切线的性质、菱形的判定和性质、弧长的计算,掌握切线的性质定理、弧长公式是解题的关键.
21、解:(1)证明见解析;
(2)⊙O的半径是7.5cm.
【解析】
(1)连接OD,根据平行线的判断方法与性质可得∠ODE=∠DEM=90°,且D在⊙O上,故DE是⊙O的切线.
(2)由直角三角形的特殊性质,可得AD的长,又有△ACD∽△ADE.根据相似三角形的性质列出比例式,代入数据即可求得圆的半径.
【详解】
(1)证明:连接OD.
∵OA=OD,
∴∠OAD=∠ODA.
∵∠OAD=∠DAE,
∴∠ODA=∠DAE.
∴DO∥MN.
∵DE⊥MN,
∴∠ODE=∠DEM=90°.
即OD⊥DE.
∵D在⊙O上,OD为⊙O的半径,
∴DE是⊙O的切线.
(2)解:∵∠AED=90°,DE=6,AE=3,
∴.
连接CD.
∵AC是⊙O的直径,
∴∠ADC=∠AED=90°.
∵∠CAD=∠DAE,
∴△ACD∽△ADE.
∴.
∴.
则AC=15(cm).
∴⊙O的半径是7.5cm.
考点:切线的判定;平行线的判定与性质;圆周角定理;相似三角形的判定与性质.
22、(1)5;(2)﹣2≤x<﹣.
【解析】
(1)原式第一项利用乘方的意义计算,第二项利用特殊角的三角函数值以及二次根式的乘法计算,第三项利用负整数指数幂法则计算,最后一项利用零指数幂法则计算,然后根据实数的运算法则计算即可得到结果;
(2)先求出两个不等式的解集,再找出解集的公共部分即可.
【详解】
(1)原式
=5;
(2)解不等式①得,x≥﹣2,
解不等式②得,
所以不等式组的解集是
用数轴表示为:
【点睛】
本题考查了实数的混合运算,特殊角的三角函数值,负整数指数幂,零指数幂,不等式组的解法,是综合题,但难度不大,计算时要注意运算符号的处理以及解集公共部分的确定.
23、(1)顶点(-2,-1) A (-1,0); (2)y=(x-2)2+1; (3) y=x2-x+3, ,y=x2-4x+3, .
【解析】
(1)将点B和点C代入求出抛物线L即可求解.
(2)将抛物线L化顶点式求出顶点再根据关于原点对称求出即可求解.
(3)将使得△PAC为等腰直角三角形,作出所有点P的可能性,求出代入即可求解.
【详解】
(1)将点B(-3,0),C(0,3)代入抛物线得:
,解得,则抛物线.
抛物线与x轴交于点A,
,,A (-1,0),
抛物线L化顶点式可得,由此可得顶点坐标顶点(-2,-1).
(2)抛物线L化顶点式可得,由此可得顶点坐标顶点(-2,-1)
抛物线L1的顶点与抛物线L的顶点关于原点对称,
对称顶点坐标为(2,1),
即将抛物线向右移4个单位,向上移2个单位.
(3) 使得△PAC为等腰直角三角形,作出所有点P的可能性.
是等腰直角三角形
,
,
,
,
,
求得.,
同理得,,,
由题意知抛物线并将点代入得:.
【点睛】
本题主要考查抛物线综合题,讨论出P点的所有可能性是解题关键.
24、 (1)见解析;(2) m=-1.
【解析】
(1)根据方程的系数结合根的判别式,即可得出△=1>1,由此即可证出:无论实数m取什么值,方程总有两个不相等的实数根;
(2)利用分解因式法解原方程,可得x1=m,x2=m+1,在根据已知条件即可得出结论.
【详解】
(1)∵△=(m+3)2﹣4(m+2)
=(m+1)2
∴无论m取何值,(m+1)2恒大于等于1
∴原方程总有两个实数根
(2)原方程可化为:(x-1)(x-m-2)=1
∴x1=1, x2=m+2
∵方程两个根均为正整数,且m为负整数
∴m=-1.
【点睛】
本题考查了一元二次方程与根的判别式,解题的关键是熟练的掌握根的判别式与根据因式分解法解一元二次方程.
2023年新疆乌鲁木齐市天山区幸福中学中考数学一模试卷(含解析): 这是一份2023年新疆乌鲁木齐市天山区幸福中学中考数学一模试卷(含解析),共23页。试卷主要包含了选择题,填空题,计算题,解答题等内容,欢迎下载使用。
2023年新疆乌鲁木齐市天山区八一中学中考数学二模试卷(含解析): 这是一份2023年新疆乌鲁木齐市天山区八一中学中考数学二模试卷(含解析),共23页。试卷主要包含了选择题,填空题,计算题,解答题等内容,欢迎下载使用。
新疆乌鲁木齐天山区重点达标名校2021-2022学年中考猜题数学试卷含解析: 这是一份新疆乌鲁木齐天山区重点达标名校2021-2022学年中考猜题数学试卷含解析,共17页。试卷主要包含了考生必须保证答题卡的整洁,计算4+,下列图形中,主视图为①的是,已知,下列说法中,不正确的是等内容,欢迎下载使用。