2020-2022年四川中考数学3年真题汇编 专题14 相似三角形与全等三角形(学生卷+教师卷)
展开专题14 相似三角形与全等三角形
一、单选题
1.(2022·四川成都·中考真题)如图,在和中,点,,,在同一直线上,,,只添加一个条件,能判定的是( )
A. B. C. D.
2.(2022·四川南充·中考真题)如图,在中,的平分线交于点D,DE//AB,交于点E,于点F,,则下列结论错误的是( )
A. B. C. D.
3.(2021·四川成都·中考真题)如图,四边形是菱形,点E,F分别在边上,添加以下条件不能判定的是( )
A. B. C. D.
4.(2021·四川阿坝·中考真题)如图,等腰△中,点D,E分别在腰AB,AC上,添加下列条件,不能判定≌的是( )
A. B. C. D.
5.(2022·四川雅安·中考真题)如图,在△ABC中,D,E分别是AB和AC上的点,DE∥BC,若=,那么=( )
A. B. C. D.
6.(2022·四川遂宁·中考真题)如图,D、E、F分别是三边上的点,其中,BC边上的高为6,且DE//BC,则面积的最大值为( )
A.6 B.8 C.10 D.12
7.(2022·四川凉山·中考真题)如图,在△ABC中,点D、E分别在边AB、AC上,若DE∥BC,,DE=6cm,则BC的长为( )
A.9cm B.12cm C.15cm D.18cm
8.(2021·四川雅安·中考真题)如图,将沿边向右平移得到,交于点G.若..则的值为( )
A.2 B.4 C.6 D.8
9.(2020·四川内江·中考真题)如图,在中,D、E分别是AB和AC的中点,,则( )
A.30 B.25 C.22.5 D.20
10.(2020·四川成都·中考真题)如图,直线,直线和被,,所截,,,,则的长为( )
A.2 B.3 C.4 D.
11.(2021·四川内江·中考真题)在同一时刻,物体的高度与它在阳光下的影长成正比.在某一时刻,有人测得一高为的竹竿的影长为,某一高楼的影长为,那么这幢高楼的高度是( )
A. B. C. D.
12.(2022·四川宜宾·中考真题)如图,和都是等腰直角三角形,,点D是BC边上的动点(不与点B、C重合),DE与AC交于点F,连结CE.下列结论:①;②;③若,则;④在内存在唯一一点P,使得的值最小,若点D在AP的延长线上,且AP的长为2,则.其中含所有正确结论的选项是( )
A.①②④ B.①②③ C.①③④ D.①②③④
13.(2021·四川绵阳·中考真题)如图,在中,,,,且,若,点是线段上的动点,则的最小值是( )
A. B. C. D.
二、填空题
14.(2022·四川广安·中考真题)如图,点D是△ABC外一点,连接BD、 AD,AD与BC交于点O.下列三个等式:①BC=AD;②∠ABC=∠BAD;③AC= BD.请从这三个等式中,任选两个作为已知条件,剩下的一个作为结论,组成一个真命题,将你选择的等式或等式的序号填在下面对应的横线上,然后对该真命题进行证明.
已知: ,
求证:
15.(2022·四川宜宾·中考真题)如图,中,点E、F分别在边AB、AC上,.若,,,则______.
16.(2022·四川凉山·中考真题)如图,CD是平面镜,光线从A点出发经CD上点O反射后照射到B点,若入射角为α,反射角为β(反射角等于入射角),AC⊥CD于点C,BD⊥CD于点D,且AC=3,BD=6,CD=12,则tanα的值为_______.
17.(2022·四川成都·中考真题)如图,和是以点为位似中心的位似图形.若,则与的周长比是_________.
18.(2021·四川南充·中考真题)如图,在中,D为BC上一点,,则的值为________.
19.(2021·四川乐山·中考真题)如图,已知点,点为直线上的一动点,点,,于点,连接.若直线与正半轴所夹的锐角为,那么当的值最大时,的值为________.
三、解答题
20.(2022·四川宜宾·中考真题)已知:如图,点A、D、C、F在同一直线上,,,.
求证:.
21.(2022·四川乐山·中考真题)如图,B是线段AC的中点,,求证:.
22.(2021·四川宜宾·中考真题)如图,已知OA=OC,OB=OD,∠AOC=∠BOD.求证:△AOB≌△COD.
23.(2021·四川南充·中考真题)如图,,AD是内部一条射线,若,于点E,于点F.求证:.
24.(2021·四川乐山·中考真题)如图,已知,,与相交于点,求证:.
25.(2021·四川泸州·中考真题)如图,点D在AB上,点E在AC上,AB=AC,∠B=∠C,求证:BD=CE
26.(2020·四川南充·中考真题)如图,点C在线段BD上,且AB⊥BD,DE⊥BD,AC⊥CE,BC=DE,求证:AB=CD.
27.(2020·四川泸州·中考真题)如图,AB平分∠CAD,AC=AD.求证:BC=BD.
28.(2020·四川内江·中考真题)如图,点,,,在同一直线上,点,在异侧,,,.
(1)求证:;
(2)若,,求的度数.
29.(2020·四川宜宾·中考真题)如图,在三角形ABC中,点D是BC上的中点,连接AD并延长到点E,使,连接CE.
(1)求证:
(2)若的面积为5,求的面积.
30.(2022·四川达州·中考真题)某校一数学兴趣小组在一次合作探究活动中,将两块大小不同的等腰直角三角形和等腰直角三角形,按如图1的方式摆放,,随后保持不动,将绕点C按逆时针方向旋转(),连接,,延长交于点F,连接.该数学兴趣小组进行如下探究,请你帮忙解答:
(1)【初步探究】如图2,当时,则_____;
(2)【初步探究】如图3,当点E,F重合时,请直接写出,,之间的数量关系:_________;
(3)【深入探究】如图4,当点E,F不重合时,(2)中的结论是否仍然成立?若成立,请给出推理过程;若不成立,请说明理由.
(4)【拓展延伸】如图5,在与中,,若,(m为常数).保持不动,将绕点C按逆时针方向旋转(),连接,,延长交于点F,连接,如图6.试探究,,之间的数量关系,并说明理由.
31.(2021·四川雅安·中考真题)如图,为等腰直角三角形,延长至点B使,其对角线,交于点E.
(1)求证:;
(2)求的值.
32.(2021·四川阿坝·中考真题)如图,中,,将绕点C顺时针旋转得到,点D落在线段AB上,连接BE.
(1)求证:DC平分;
(2)试判断BE与AB的位置关系,并说明理由:
(3)若,求的值.
33.(2020·四川眉山·中考真题)如图,和都是等边三角形,点、、三点在同一直线上,连接,,交于点.
(1)若,求证:;
(2)若,.
①求的值;
②求的长.
34.(2021·四川乐山·中考真题)在等腰中,,点是边上一点(不与点、重合),连结.
(1)如图1,若,点关于直线的对称点为点,结,,则________;
(2)若,将线段绕点顺时针旋转得到线段,连结.
①在图2中补全图形;
②探究与的数量关系,并证明;
(3)如图3,若,且,试探究、、之间满足的数量关系,并证明.
35.(2020·四川凉山·中考真题)如图,点P、Q分别是等边边AB、BC上的动点(端点除外),点P、点Q以相同的速度,同时从点A、点B出发.
(1)如图1,连接AQ、CP求证:
(2)如图1,当点P、Q分别在AB、BC边上运动时,AQ、CP相交于点M,的大小是否变化?若变化,请说明理由;若不变,求出它的度数
(3)如图2,当点P、Q在AB、BC的延长线上运动时,直线AQ、CP相交于M,的大小是否变化?若变化,请说明理由;若不变,求出它的度数.
36.(2020·四川达州·中考真题)(1)【阅读与证明】
如图1,在正的外角内引射线,作点C关于的对称点E(点E在内),连接,、分别交于点F、G.
①完成证明:点E是点C关于的对称点,
,,.
正中,,,
,得.
在中,,______.
在中,,______.
②求证:.
(2)【类比与探究】
把(1)中的“正”改为“正方形”,其余条件不变,如图2.类比探究,可得:
①______;
②线段、、之间存在数量关系___________.
(3)【归纳与拓展】
如图3,点A在射线上,,,在内引射线,作点C关于的对称点E(点E在内),连接,、分别交于点F、G.则线段、、之间的数量关系为__________.
37.(2022·四川达州·中考真题)某校一数学兴趣小组在一次合作探究活动中,将两块大小不同的等腰直角三角形和等腰直角三角形,按如图1的方式摆放,,随后保持不动,将绕点C按逆时针方向旋转(),连接,,延长交于点F,连接.该数学兴趣小组进行如下探究,请你帮忙解答:
(1)【初步探究】如图2,当时,则_____;
(2)【初步探究】如图3,当点E,F重合时,请直接写出,,之间的数量关系:_________;
(3)【深入探究】如图4,当点E,F不重合时,(2)中的结论是否仍然成立?若成立,请给出推理过程;若不成立,请说明理由.
(4)【拓展延伸】如图5,在与中,,若,(m为常数).保持不动,将绕点C按逆时针方向旋转(),连接,,延长交于点F,连接,如图6.试探究,,之间的数量关系,并说明理由.
38.(2021·四川资阳·中考真题)已知,在中,.
(1)如图1,已知点D在边上,,连结.试探究与的关系;
(2)如图2,已知点D在下方,,连结.若,,,交于点F,求的长;
(3)如图3,已知点D在下方,连结、、.若,,,,求的值.
39.(2021·四川乐山·中考真题)在等腰中,,点是边上一点(不与点、重合),连结.
(1)如图1,若,点关于直线的对称点为点,结,,则________;
(2)若,将线段绕点顺时针旋转得到线段,连结.
①在图2中补全图形;
②探究与的数量关系,并证明;
(3)如图3,若,且,试探究、、之间满足的数量关系,并证明.
2020-2022年浙江中考数学3年真题汇编 专题14 圆压轴题型汇总(学生卷+教师卷): 这是一份2020-2022年浙江中考数学3年真题汇编 专题14 圆压轴题型汇总(学生卷+教师卷),文件包含专题14圆压轴题型汇总-三年2020-2022中考数学真题分项汇编浙江专用解析版docx、专题14圆压轴题型汇总-三年2020-2022中考数学真题分项汇编浙江专用原卷版docx等2份试卷配套教学资源,其中试卷共36页, 欢迎下载使用。
2020-2022年四川中考数学3年真题汇编 专题02 整式与因式分解(学生卷+教师卷): 这是一份2020-2022年四川中考数学3年真题汇编 专题02 整式与因式分解(学生卷+教师卷),文件包含专题02整式与因式分解-三年2020-2022中考数学真题分项汇编四川专用解析版docx、专题02整式与因式分解-三年2020-2022中考数学真题分项汇编四川专用原卷版docx等2份试卷配套教学资源,其中试卷共37页, 欢迎下载使用。
2020-2022年四川中考数学3年真题汇编 专题01 实数(学生卷+教师卷): 这是一份2020-2022年四川中考数学3年真题汇编 专题01 实数(学生卷+教师卷),文件包含专题01实数-三年2020-2022中考数学真题分项汇编四川专用解析版docx、专题01实数-三年2020-2022中考数学真题分项汇编四川专用原卷版docx等2份试卷配套教学资源,其中试卷共36页, 欢迎下载使用。