北师大版九年级上册2 用频率估计概率课后练习题
展开第18课 用频率估计概率课后培优练级练培优第一阶——基础过关练一、单选题1.在抛掷硬币的试验中,下列结论正确的是( )A.经过大量重复的抛掷硬币试验,可发现“正面向上”的频率越来越稳定B.抛掷10000次硬币与抛掷12000次硬币“正面向上”的频率相同C.抛掷50000次硬币,可得“正面向上”的频率为0.5D.若抛掷2000次硬币“正面向上”的频率是0.518,则“正面向下”的频率也为0.5182.投掷硬币m次,正面向上n次,其频率p=,则下列说法正确的是( )A.p一定等于B.p一定不等于C.多投一次,p更接近D.投掷次数逐步增加,p稳定在附近3.一个不透明的盒子里有n个除颜色外其他完全相同的小球,其中有9个黄球,每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后再放回盒子,通过大量重复摸球实验后发现,摸到黄球的频率稳定在0.3,那么估计摸到黄球的概率为( )A.0.3 B.0.7 C.0.4 D.0.64.某口袋中有红色、黄色、蓝色玻璃球共100个,小明通过多次摸球试验后,发现摸到红球、黄球、蓝球的频率为35%、25%和40%,则估计红、黄、蓝球的个数分别为( ).A.35,25,40 B.40,25,35 C.25,40,25 D.40,35,255.某鱼塘里养了1600条鲤鱼,若干条草鱼和800条鲢鱼,该鱼塘主通过多次捕捞试验后发现,捕到草鱼的频率稳定在0.5附近,则该鱼塘捞到鲢鱼的概率约为( )A. B. C. D.6.为了解某地区九年级男生的身高情况,随机抽取了该地区1000名九年级男生的身高数据,统计结果如下.根据以上统计结果,随机抽取该地区一名九年级男生,估计他的身高不低于的概率是( )A.0.32 B.0.55 C.0.68 D.0.877.某班学生做“用频率估计概率”的实验时,给出的某一结果出现如图所示的统计图,则符合这一结果的实验可能是( )A.抛一枚硬币,出现正面朝上B.从标有1,2,3,4,5,6的六张卡片中任抽一张,出现偶数C.从一个装有6个红球和3个黑球的袋子中任取一球,取到的是黑球D.先后两次掷一枚质地均匀的正六面体骰子,两次向上的点数之和是78.某学习小组做“用频率估计概率”的实验时,统计了某一结果出现的频率,绘制了如表的表格,则符合这一结果的实验最有可能的是( )A.抛一枚硬币,出现正面B.一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃C.抛一个质地均匀的正六面体骰子(六个面上分别标1,2,3,4,5,6),向上的面点数是5D.从一个装有2个白球和1个红球的袋子中任取一球,取到红球二、填空题9.事件A发生的概率为,大量重复试验后,事件A平均每n次发生的次数是10,那么n=__.10.在一个不透明的布袋中装有红色、白色玻璃球共40个,除颜色外其他完全相同.小明通过多次摸球试验后发现,其中摸到红色球的频率稳定在15%左右,则口袋中红色球可能有____个.11.一个事件经过500次的试验,某种结果发生的频率为0.32,那么在这一次试验中,该种结果发生的概率估计值是___________.12.用6个球(除颜色外没有区别)设计满足以下条件的游戏:摸到白球的概率为,摸到红球的概率为,摸到黄球的概率为.则应设____个白球,_____个红球,_____个黄球.13.小慧在一次用“频率估计概率”的试验中,把“学生知耻处,方知艺不精”中的每个汉字分别写在十张完全相同的卡片上,然后把卡片的背面朝上,随机抽取一张后统计某一个汉字被抽到的频率,并绘制了如图所示的折线统计图,则符合这一结果的汉字是______.14.某学习小组做抛掷一枚纪念币的实验,整理同学们获得的实验数据,如下表.下面有三个推断:①在用频率估计概率时,用实验5000次时的频率0.3494一定比用实验4000次时的频率0.3500更准确;②如果再次做此实验,仍按上表抛掷的次数统计数据,那么在数据表中,“正面向上”的频率有更大的可能仍会在0.35附近摆动;③通过上述实验的结果,可以推断这枚纪念币有很大的可能性不是质地均匀的.其中正确的是__.三、解答题15.在同样的条件下对某种小麦种子进行发芽试验,统计发芽种子数,获得如下频数表.(1)估计该麦种的发芽概率.(2)如果播种该种小麦每公顷所需麦苗数为4000000棵,种子发芽后的成秧率为80%,该麦种的千粒质量为50g.那么播种3公顷该种小麦,估计约需麦种多少千克(精确到1kg)?16.在一个不透明的盒子里装着只有颜色不同的黑、白两种球共5个,小明做摸球实验,他将盒子里面的球搅匀后从中随机摸出一球记下颜色,再把它放回盒子,不断重复上述过程实验n次,下表是小明“摸到白球”的频数、频率统计表.(1)观察上表,可以推测,摸一次摸到白球的概率为______.(2)请你估计盒子里白球个数.(3)若往盒子中同时放入x个白球和y个黑球,从盒子中随机取出一个白球的概率是0.25,求y与x之间的函数关系式.17.根据你所学的概率知识, 回答下列问题:(1)我们知道: 抛掷一枚均匀的硬币, 硬币正面朝上的概率是________. 若抛两枚均匀硬币, 硬币落地后, 求两枚硬币都是正面朝上的概率. (用树状图或列表来说明)(2)小刘同学想估计一枚纪念币正面朝上的概率, 通过试验得到的结果如下表所示:根据上表, 下面有三个推断:①当抛掷次数是1000时, “正面朝上”的频率是, 所以“正面朝上”的概率是; ②随着试验次数的增加, “正面朝上”的频率总是在附近摆动, 显示出一定稳定性, 可以估计“正面朝上”的概率是;③若再做随机抛郑该纪念币的试验, 则当抛掷次数为3000时, 出现“正面朝上”的次数不一定是1558次;其中推断合理的序号是________.培优第二阶——拓展培优练一、单选题1.关于频率和概率的关系,下列说法正确的是( ).A.频率等于概率B.当实验次数很大时,频率稳定在概率附近C.当实验次数很大时,概率稳定在频率附近D.实验得到的频率与概率不可能相等2.已知抛一枚均匀硬币正面朝上的概率为,下列说法正确的是( )A.连续抛一枚均匀硬币2次有可能一次正面朝上,2次正面朝上,0次正面朝上B.连续抛一枚均匀硬币10次,有可能正面都朝上C.大量反复抛一枚均匀硬币,平均每100次出现正面朝上的次数不确定;D.通过抛一枚均匀硬币确定谁先发球的比赛规则是公平的,3.在一个不透明的盒子中装有个小球,它们除了颜色不同外,其余都相同,其中有个白球,每次试验前,将盒子中的小球摇匀,随机摸出一个球记下颜色后再放回盒中.大量重复上述试验后发现,摸到白球的频率稳定在,那么可以推算出大约是( )A.10 B.14 C.16 D.404.如图1所示,平整的地面上有一个不规则图案(图中阴影部分),小明想了解该图案的面积是多少,他采取了以下办法:用一个长为,宽为的长方形,将不规则图案围起来,然后在适当位置随机朝长方形区域扔小球,并记录小球落在不规则图案上的次数(小球扔在界线上或长方形区域外不计入试验结果),他将若干次有效试验的结果绘制成了图2所示的折线统计图,由此可估计不规则图案的面积大约是( )A. B. C. D.5.下表显示的是某种大豆在相同条件下的发芽试验结果:下面有三个推断:①当n为400时,发芽的大豆粒数为382,发芽的频率为0.955,所以大豆发芽的概率是0.955;②随着试验时大豆的粒数的增加,大豆发芽的频率总在0.95附近摆动,显示出一定的稳定性,可以估计大豆发芽的概率是0.95;③若大豆粒数n为4000,估计大豆发芽的粒数大约为3800粒.其中推断合理的是( )A.①②③ B.①② C.①③ D.②③6.数学社团的同学做了估算π的实验.方法如下:第一步:请全校同学随意写出两个实数x、y(x、y可以相等),且它们满足:0<x<1,0<y<1;第二步:统计收集上来的有效数据,设“以x,y,1为三条边长能构成锐角三角形”为事件A;第三步:计算事件A发生的概率,及收集的本校有效数据中事件A出现的频率;第四步:估算出π的值.为了计算事件A的概率,同学们通过查阅资料得到以下两条信息:①如果一次试验中,结果落在区域D中每一个点都是等可能的,用A表示“试验结果落在区域D中一个小区域M中”这个事件,那么事件A发生的概率为P(A)=;②若x,y,1三个数据能构成锐角三角形,则需满足x2+y2>1.根据上述材料,社团的同学们画出图,若共搜集上来的m份数据中能和“1”成锐角三角形的数据有n份,则可以估计π的值为( )A. B.C. D.二、填空题7.在相同的条件下做重复试验,若事件A发生的概率是5%,则下列陈述(1)做100次这种试验,事件A必发生5次;(2)大量反复做这种试验,事件A平均每100次发生5次;(3)做100次这种试验,事件A不可能发生6次,其中正确的是_________.(填序号)8.从一个不透明的口袋中随机摸出一球,再放回袋中,不断重复上述过程,一共摸了次,其中有次摸到黑球,已知口袋中仅有黑球个和白球若干个,这些球除颜色外,其他都一样,由此估计口袋中有___个白球.9.对一批口罩进行抽检,统计合格口罩的只数,得到合格口罩的频率如下:估计从该批次口罩中任抽一只口罩是合格品的概率为_____.10.做任意抛掷一只纸杯的重复实验,部分数据如下表根据上表,可估计任意抛掷一只纸杯,杯口朝上的概率约为__________.11.有两个正方体的积木,如图所示:下面是淘气掷200次积木的情况统计表:根据表中的数据推测,淘气更有可能掷的是___号积木,请简要说明你的判断理由__.12.“六⋅一”儿童节,某玩具超市设立了一个如图所示的可以自由转动的转盘,开展有奖购买活动.顾客购买玩具就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应奖品.下表是该活动的一组统计数据.下列说法:①当n很大时,估计指针落在“铅笔”区域的频率大约是0.70;②假如你去转动转盘一次,获得铅笔的概率大约是0.70;③如果转动转盘2000次,指针落在“文具盒”区域的次数大约有600次;④转动转盘10次,一定有3次获得文具盒.中正确的是_____三、解答题13.小明在操场上做游戏,他发现地上有一个不规则的封闭图形ABC.为了知道它的面积,他在封闭图形内划出了一个半径为1米的圆,在不远处向图形内掷石子,且记录如下:(1)随着次数的增多,小明发现m与n的比值在一个常数k附近波动,请你写出k的值.(2)请利用学过的知识求出封闭图形ABC的大致面积.14.某水果公司新进一批柑橘,销售人员首先从所有的柑橘中随机抽取若干柑橘,进行“柑橘损坏率”统计,并把获得的数据记录在下表中.(1)柑橘损坏的概率约为______(精确到0.1);(2)当抽取柑橘的总质量n=2000kg时,损坏柑橘质量m最有可能是______.A.99.32kg B.203.45kg C.486.76kg D.894.82kg(3)若水果公司新进柑橘的总质量为10000kg,成本价是1.8元/kg,公司希望这些柑橘能够获得利润5400元,那么在出售柑橘(去掉损坏的柑橘)时,每千克大约定价为多少元比较合适?15.在一个不透明的袋子里装有只有颜色不同的黑、白两种颜色的球共50个,某学习小组做摸球试验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复,下表是活动进行中的一组统计数据:(1)请估计:当n很大时,摸到黑球的频率将会接近 (精确到0.1);(2)试估计袋子中有黑球 个;(3)若学习小组通过试验结果,想使得在这个不透明袋子中每次摸到黑球的可能性大小为50%,则可以在袋子中增加相同的白球 个或减少黑球 个.16.苗木种植不仅绿了家园,助力脱贫攻坚,也成为乡村增收致富的“绿色银行”.小王承包了一片荒山,他想把这片荒山改造成一个苹果园,现在有一种苹果树苗,它的成活率如下表所示:根据以上信息,回答下列问题:(1)当移植的棵数是7000时,表格记录成活数是________,那么成活率是________(2)随着移植棵数的增加,树苗成活的频率总在0.900附近摆动,显示出一定的稳定性,可以估计树苗成活的概率是________(3)若小王移植10000棵这种树苗,则可能成活________;(4)若小王移植20000棵这种树苗,则一定成活18000棵.此结论正确吗?说明理由.培优第三阶——中考沙场点兵一、单选题1.(2020·江苏徐州·中考真题)在一个不透明的袋子里装有红球、黄球共个,这些球除颜色外都相同.小明通过多次实验发现,摸出红球的频率稳定在左右,则袋子中红球的个数最有可能是( )A. B. C. D.2.(2019·海南·中考真题)某路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当小明到达该路口时,遇到绿灯的概率是( )A. B. C. D.3.(2013·山东青岛·中考真题)一个不透明的口袋里装有除颜色都相同的5个白球和若干个红球,在不允许将球倒出来数的前提下,小亮为了估计其中的红球数,采用如下方法,先将口袋中的球摇匀,再从口袋里随机摸出一球,记下颜色,然后把它放回口袋中,不断重复上述过程,小亮共摸了100次,其中有10次摸到白球,因此小亮估计口袋中的红球大约有个( )A.45 B.48 C.50 D.554.(2015·福建南平·中考真题)在一个不透明的盒子中有20个除颜色外均相同的小球,每次摸球前先将盒中的球摇匀,随机摸出一个球记下颜色后再放回盒中,通过大量重复摸球试验后,发现摸到红球的频率稳定于0.3,由此可估计盒中红球的个数约为( )A.3 B.6 C.7 D.145.(2019·江苏泰州·中考真题)小明和同学做“抛掷质地均匀的硬币试验”获得的数据如表:若抛掷硬币的次数为1000,则“正面朝上”的频数最接近( )A.20 B.300 C.500 D.8006.(2017·北京·中考真题)如图显示了用计算机模拟随机投掷一枚图钉的某次实验的结果.下面有三个推断:①当投掷次数是500时,计算机记录“钉尖向上”的次数是308,所以“钉尖向上”的概率是0.616;②随着试验次数的增加,“钉尖向上”的频率总在0.618附近摆动,显示出一定的稳定性,可以估计“钉尖向上”的概率是0.618;③若再次用计算机模拟此实验,则当投掷次数为1000时,“钉尖向上”的频率一定是0.620.其中合理的是( )A.① B.② C.①② D.①③二、填空题7.(2022·辽宁·中考真题)在一个不透明的口袋中装有红球和白球共8个,这些球除颜色外都相同,将口袋中的球搅匀后,从中随机摸出一个球,记下它的颜色后再放回口袋中,不断重复这一过程,共摸了100次球,发现有75次摸到红球,则口袋中红球的个数约为___________.8.(2022·广西桂林·中考真题)当重复试验次数足够多时,可用频率来估计概率.历史上数学家皮尔逊(Pearson)曾在实验中掷均匀的硬币24000次,正面朝上的次数是12012次,频率约为0.5,则掷一枚均匀的硬币,正面朝上的概率是 _____.9.(2022·四川自贡·中考真题)为了比较甲、乙两鱼池中的鱼苗数目,小明从两鱼池中各捞出100条鱼苗,每条做好记号,然后放回原鱼池;一段时间后,在同样的地方,小明再从甲、乙两鱼池中各捞出100条鱼苗,发现其中有记号的鱼苗分别是5条、10条,可以初步估计鱼苗数目较多的是____________鱼池(填甲或乙)10.(2021·湖北宜昌·中考真题)社团课上,同学们进行了“摸球游戏”:在一个不透明的盒子里装有几十个除颜色不同外其余均相同的黑、白两种球,将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程.整理数据后,制作了“摸出黑球的频率”与“摸球的总次数”的关系图象如图所示,经分析可以推断盒子里个数比较多的是___________(填“黑球”或“白球”).11.(2020·广西·中考真题)某射击运动员在同一条件下的射击成绩记录如下:根据频率的稳定性,估计这名运动员射击一次时“射中9环以上”的概率是_______(结果保留小数点后一位).12.(2020·内蒙古呼和浩特·中考真题)公司以3元/的成本价购进柑橘,并希望出售这些柑橘能够获得12000元利润,在出售柑橘(去掉损坏的柑橘)时,需要先进行“柑橘损坏率”统计,再大约确定每千克柑橘的售价,右面是销售部通过随机取样,得到的“柑橘损坏率”统计表的一部分,由此可估计柑橘完好的概率为_______(精确到0.1);从而可大约确定每千克柑橘的实际售价为_______元时(精确到0.1),可获得12000元利润.三、解答题13.(2021·湖南长沙·中考真题)“网红”长沙入选2021年“五一”假期热门旅游城市.本市某景点为吸引游客,设置了一种游戏,其规则如下:凡参与游戏的游客从一个装有12个红球和若干个白球(每个球除颜色外,其他都相同)的不透明纸箱中,随机摸出一个球,摸到红球就可免费得到一个景点吉祥物.据统计参与这种游戏的游客共有60000人,景点一共为参与该游戏的游客免费发放了景点吉祥物15000个.(1)求参与该游戏可免费得到景点吉祥物的频率;(2)请你估计纸箱中白球的数量接近多少?14.(2020·重庆·中考真题)每年的4月15日是我国全民国家安全教育日.某中学在全校七、八年级共800名学生中开展“国家安全法”知识竞赛,并从七、八年级学生中各抽取20名学生统计这部分学生的竞赛成绩(竞赛成绩均为整数,满分10分,6分及以上为合格).相关数据统计、整理如下:八年级抽取的学生的竞赛成绩: 4,4,6,6,6,6,7,7,7,8,8,8,8,8,8,9,9,9,10,10.根据以上信息,解答下列问题:(1)填空:a=_____,b=____,c=____.(2)估计该校七、八年级共800名学生中竞赛成绩达到9分及以上的人数;(3)根据以上数据分析,从一个方面评价两个年级“国家安全法”知识竞赛的学生成绩谁更优异.15.(2019·江苏盐城·中考真题)某公司其有名销售人员,为了解该公司销售人员某季度商品销售情况,随机抽取部分销售人员该季度的销售数量,并把所得数据整理后绘制成如下统计图表进行分析.频率分布表请根据以上信息,解决下列问题:(1)频数分布表中,________、________:(2)补全频数分布直方图;(3)如果该季度销量不低于件的销售人员将被评为“优秀员工”,试估计该季度被评为“优秀员工”的人数.身高人数60260550130实验次数10020030050080010002000频率0.3650.3280.3300.3340.3360.3320.333抛掷次数5010020050010002000300040005000“正面向上”的次数193868168349707106914001747“正面向上”的频率0.38000.38000.34000.33600.34900.35350.35630.35000.3494实验种植数(粒)1550100200500100020003000发芽频数04459218847695119002850摸球实验次数n10100150200500…摸到白球的频数m2223139101…摸到白球的频率p0.2000.2200.2070.1950.202…抛掷次数 50010001500250030004000500010000“正面朝上”的次数 26551279313061558208325985204“正面朝上”的频率 每批粒数n100300400600100020003000发芽的粒数m9628238257094819042850发芽的频率 0.9600.9400.9550.9500.9480.9520.950抽取只数(只)50100150500100020001000050000合格频率0.820.830.820.830.840.840.840.84抛掷次数50100500800150030005000杯口朝上的频率0.10.150.20.210.220.220.22灰色的面朝上白色的面朝上32次168次转动转盘的次数n1001502005008001000落在“铅笔”区域的次数m68108140355560690落在“铅笔”区域的频率0.680.720.700.710.700.69掷石子次数石子落在的区域ABC50次150次300次石子落在圆内(含圆上)的次数m144393石子落在阴影内的次数n1985186柑橘总质量n/kg…300350400450500损坏柑橘质量m/kg…30.9335.3240.3645.0251.05柑橘损坏的频率(精确到0.001)…0.1030.1010.1010.1000.102摸球的次数n1000200030005000800010000摸到黑球的次数m65011801890310048206013摸到黑球的频率0.650.590.630.620.60250.6013移植棵数()成活数()成活率()移植棵数()成活数()成活率()50470.940150013350.8902702350.870350032030.9154003690.923700063357506620.88314000126280.902抛掷次数100200300400500正面朝上的频数5398156202244射击次数“射中环以上”的次数“射中环以上”的频率(结果保留小数点后两位)柑橘总质量损坏柑橘质量柑橘损坏的频率(精确到0.001)………25024.750.09930030.930.10335035.120.10045044.540.09950050.620.101组别销售数量(件)频数频率ABCDE合计
初中数学人教版九年级上册25.3 用频率估计概率同步测试题: 这是一份初中数学人教版九年级上册25.3 用频率估计概率同步测试题
人教版九年级上册23.2.1 中心对称一课一练: 这是一份人教版九年级上册23.2.1 中心对称一课一练
人教版九年级上册23.1 图形的旋转课后作业题: 这是一份人教版九年级上册23.1 图形的旋转课后作业题