|试卷下载
搜索
    上传资料 赚现金
    陕西省延安市延长县达标名校2021-2022学年中考数学模拟精编试卷含解析
    立即下载
    加入资料篮
    陕西省延安市延长县达标名校2021-2022学年中考数学模拟精编试卷含解析01
    陕西省延安市延长县达标名校2021-2022学年中考数学模拟精编试卷含解析02
    陕西省延安市延长县达标名校2021-2022学年中考数学模拟精编试卷含解析03
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    陕西省延安市延长县达标名校2021-2022学年中考数学模拟精编试卷含解析

    展开
    这是一份陕西省延安市延长县达标名校2021-2022学年中考数学模拟精编试卷含解析,共20页。试卷主要包含了考生要认真填写考场号和座位序号,计算﹣2+3的结果是,若分式有意义,则x的取值范围是等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项
    1.考生要认真填写考场号和座位序号。
    2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
    3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.如图,将△ABC绕点A逆时针旋转一定角度,得到△ADE,若∠CAE=65°,∠E=70°,且AD⊥BC,∠BAC的度数为( ).

    A.60 ° B.75° C.85° D.90°
    2. “a是实数,”这一事件是( )
    A.不可能事件 B.不确定事件 C.随机事件 D.必然事件
    3.如图,⊙O中,弦BC与半径OA相交于点D,连接AB,OC,若∠A=60°,∠ADC=85°,则∠C的度数是(  )

    A.25° B.27.5° C.30° D.35°
    4.已知两组数据,2、3、4和3、4、5,那么下列说法正确的是(  )
    A.中位数不相等,方差不相等
    B.平均数相等,方差不相等
    C.中位数不相等,平均数相等
    D.平均数不相等,方差相等
    5.据调查,某班20为女同学所穿鞋子的尺码如表所示,
    尺码(码)
    34
    35
    36
    37
    38
    人数
    2
    5
    10
    2
    1
    则鞋子尺码的众数和中位数分别是( )
    A.35码,35码 B.35码,36码 C.36码,35码 D.36码,36码
    6.计算﹣2+3的结果是(  )
    A.1 B.﹣1 C.﹣5 D.﹣6
    7.已知地球上海洋面积约为361 000 000km2,361 000 000这个数用科学记数法可表示为( )
    A.3.61×106 B.3.61×107 C.3.61×108 D.3.61×109
    8.如图是由四个相同的小正方形组成的立体图形,它的俯视图为( )

    A. B. C. D.
    9.若分式有意义,则x的取值范围是( )
    A.x>3 B.x<3 C.x≠3 D.x=3
    10.下列天气预报中的图标,其中既是轴对称图形又是中心对称图形的是(  )
    A. B. C. D.
    二、填空题(共7小题,每小题3分,满分21分)
    11.如图(a),有一张矩形纸片ABCD,其中AD=6cm,以AD为直径的半圆,正好与对边BC相切,将矩形纸片ABCD沿DE折叠,使点A落在BC上,如图(b).则半圆还露在外面的部分(阴影部分)的面积为_______.

    12.《九章算术》是我国古代数学名著,书中有下列问题:“今有勾五步,股十二步,问勾中容方几何?”其意思为:“今有直角三角形,勾(短直角边)长为5步,股(长直角边)长为12步,问该直角三角形能容纳的正方形边长最大是多少步?”该问题的答案是______步.

    13.已知图中的两个三角形全等,则∠1等于____________.

    14.计算_______.
    15.如图,直线y=x,点A1坐标为(1,0),过点A1作x轴的垂线交直线于点B1,以原点O为圆心,OB1长为半径画弧交x轴于点A2,再过点A2作x轴的垂线交直线于点B2,以原点O为圆心,OB2长为半径画弧交x轴于点A3,……按此作法进行去,点Bn的纵坐标为 (n为正整数).
    16.如图,AE是正八边形ABCDEFGH的一条对角线,则∠BAE= °.

    17.比较大小:_____1(填“<”或“>”或“=”).
    三、解答题(共7小题,满分69分)
    18.(10分)某初中学校组织200位同学参加义务植树活动.甲、乙两位同学分别调查了30位同学的植树情况,并将收集的数据进行了整理,绘制成统计表1和表2:
    表1:甲调查九年级30位同学植树情况
    每人植树棵数
    7
    8
    9
    10
    人数
    3
    6
    15
    6
    表2:乙调查三个年级各10位同学植树情况
    每人植树棵数
    6
    7
    8
    9
    10
    人数
    3
    6
    3
    12
    6
    根据以上材料回答下列问题:
    (1)关于于植树棵数,表1中的中位数是   棵;表2中的众数是   棵;
    (2)你认为同学   (填“甲”或“乙”)所抽取的样本能更好反映此次植树活动情况;
    (3)在问题(2)的基础上估计本次活动200位同学一共植树多少棵?
    19.(5分)如图,在中,AB=AC,,点D是BC的中点,DE⊥AB于点E,DF⊥AC于点F.

    (1)∠EDB=_____(用含的式子表示)
    (2)作射线DM与边AB交于点M,射线DM绕点D顺时针旋转,与AC边交于点N.
    ①根据条件补全图形;
    ②写出DM与DN的数量关系并证明;
    ③用等式表示线段BM、CN与BC之间的数量关系,(用含的锐角三角函数表示)并写出解题思路.
    20.(8分)如图抛物线y=ax2+bx,过点A(4,0)和点B(6,2),四边形OCBA是平行四边形,点M(t,0)为x轴正半轴上的点,点N为射线AB上的点,且AN=OM,点D为抛物线的顶点.
    (1)求抛物线的解析式,并直接写出点D的坐标;
    (2)当△AMN的周长最小时,求t的值;
    (3)如图②,过点M作ME⊥x轴,交抛物线y=ax2+bx于点E,连接EM,AE,当△AME与△DOC相似时.请直接写出所有符合条件的点M坐标.

    21.(10分)如图,二次函数的图象与x轴交于A、B两点,与y轴交于点C,已知点A(﹣4,0).求抛物线与直线AC的函数解析式;若点D(m,n)是抛物线在第二象限的部分上的一动点,四边形OCDA的面积为S,求S关于m的函数关系式;若点E为抛物线上任意一点,点F为x轴上任意一点,当以A、C、E、F为顶点的四边形是平行四边形时,请求出满足条件的所有点E的坐标.

    22.(10分)如图,一枚运载火箭从距雷达站C处5km的地面O处发射,当火箭到达点A,B时,在雷达站C处测得点A,B的仰角分别为34°,45°,其中点O,A,B在同一条直线上.求AC和AB的长(结果保留小数点后一位)(参考数据:sin34°≈0.56;cos34°≈0.83;tan34°≈0.67)

    23.(12分)某经销商从市场得知如下信息:

    A品牌手表
    B品牌手表
    进价(元/块)
    700
    100
    售价(元/块)
    900
    160
    他计划用4万元资金一次性购进这两种品牌手表共100块,设该经销商购进A品牌手表x块,这两种品牌手表全部销售完后获得利润为y元.试写出y与x之间的函数关系式;若要求全部销售完后获得的利润不少于1.26万元,该经销商有哪几种进货方案;选择哪种进货方案,该经销商可获利最大;最大利润是多少元.
    24.(14分)一辆汽车行驶时的耗油量为0.1升/千米,如图是油箱剩余油量(升)关于加满油后已行驶的路程(千米)的函数图象.
    根据图象,直接写出汽车行驶400千米时,油箱内的剩余油量,并计算加满油时油箱的油量;求关于的函数关系式,并计算该汽车在剩余油量5升时,已行驶的路程.



    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、C
    【解析】
    试题分析:根据旋转的性质知,∠EAC=∠BAD=65°,∠C=∠E=70°.
    如图,设AD⊥BC于点F.则∠AFB=90°,

    ∴在Rt△ABF中,∠B=90°-∠BAD=25°,
    ∴在△ABC中,∠BAC=180°-∠B-∠C=180°-25°-70°=85°,
    即∠BAC的度数为85°.故选C.
    考点: 旋转的性质.
    2、D
    【解析】
    是实数,||一定大于等于0,是必然事件,故选D.
    3、D
    【解析】
    分析:直接利用三角形外角的性质以及邻补角的关系得出∠B以及∠ODC度数,再利用圆周角定理以及三角形内角和定理得出答案.
    详解:∵∠A=60°,∠ADC=85°,
    ∴∠B=85°-60°=25°,∠CDO=95°,
    ∴∠AOC=2∠B=50°,
    ∴∠C=180°-95°-50°=35°
    故选D.
    点睛:此题主要考查了圆周角定理以及三角形内角和定理等知识,正确得出∠AOC度数是解题关键.
    4、D
    【解析】
    分别利用平均数以及方差和中位数的定义分析,进而求出答案.
    【详解】
    2、3、4的平均数为:(2+3+4)=3,中位数是3,方差为: [(2﹣3)2+(3﹣3)2+(3﹣4)2]= ;
    3、4、5的平均数为:(3+4+5)=4,中位数是4,方差为: [(3﹣4)2+(4﹣4)2+(5﹣4)2]= ;
    故中位数不相等,方差相等.
    故选:D.
    【点睛】
    本题考查了平均数、中位数、方差的意义,解答本题的关键是熟练掌握这三种数的计算方法.
    5、D
    【解析】
    众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.
    【详解】
    数据36出现了10次,次数最多,所以众数为36,
    一共有20个数据,位置处于中间的数是:36,36,所以中位数是(36+36)÷2=36.
    故选D.
    【点睛】
    考查中位数与众数,掌握众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数是解题的关键.
    6、A
    【解析】
    根据异号两数相加的法则进行计算即可.
    【详解】
    解:因为-2,3异号,且|-2|<|3|,所以-2+3=1.
    故选A.
    【点睛】
    本题主要考查了异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值.
    7、C
    【解析】
    分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于1时,n是正数;当原数的绝对值小于1时,n是负数.
    解答:解:将361 000 000用科学记数法表示为3.61×1.
    故选C.
    8、B
    【解析】
    根据俯视图是从上往下看的图形解答即可.
    【详解】
    从上往下看到的图形是:
    .
    故选B.
    【点睛】
    本题考查三视图的知识,解决此类图的关键是由三视图得到相应的立体图形.从正面看到的图是正视图,从上面看到的图形是俯视图,从左面看到的图形是左视图,能看到的线画实线,被遮挡的线画虚线.
    9、C
    【解析】
    试题分析:∵分式有意义,∴x﹣3≠0,∴x≠3;故选C.
    考点:分式有意义的条件.
    10、A
    【解析】
    根据轴对称图形与中心对称图形的概念求解.
    【详解】
    解:A、是轴对称图形,也是中心对称图形,符合题意;
    B、是轴对称图形,不是中心对称图形,不合题意;
    C、不是轴对称图形,也不是中心对称图形,不合题意;
    D、不是轴对称图形,不是中心对称图形,不合题意.
    故选:A.
    【点睛】
    此题主要考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.

    二、填空题(共7小题,每小题3分,满分21分)
    11、
    【解析】
    解:如图,作OH⊥DK于H,连接OK,

    ∵以AD为直径的半圆,正好与对边BC相切,∴AD=2CD.
    ∴根据折叠对称的性质,A'D=2CD.
    ∵∠C=90°,∴∠DA'C=30°.∴∠ODH=30°.∴∠DOH=60°.
    ∴∠DOK=120°.
    ∴扇形ODK的面积为.
    ∵∠ODH=∠OKH=30°,OD=3cm,∴.∴.
    ∴△ODK的面积为.
    ∴半圆还露在外面的部分(阴影部分)的面积是:.
    故答案为:.
    12、.
    【解析】
    如图,根据正方形的性质得:DE∥BC,则△ADE∽△ACB,列比例式可得结论.
    【详解】
    如图,
    ∵四边形CDEF是正方形,
    ∴CD=ED,DE∥CF,
    设ED=x,则CD=x,AD=12-x,
    ∵DE∥CF,
    ∴∠ADE=∠C,∠AED=∠B,
    ∴△ADE∽△ACB,
    ∴=,
    ∴=,
    ∴x=,
    故答案为.

    【点睛】
    本题考查了相似三角形的判定和性质、正方形的性质,设未知数,构建方程是解题的关键.
    13、58°
    【解析】

    如图,∠2=180°−50°−72°=58°,
    ∵两个三角形全等,
    ∴∠1=∠2=58°.
    故答案为58°.
    14、
    【解析】
    根据同底数幂的乘法法则计算即可.
    【详解】



    故答案是:
    【点睛】
    本题考查了同底数幂的乘法,熟练掌握同底数幂的乘法运算法则是解题的关键.
    15、.
    【解析】
    寻找规律: 由直线y=x的性质可知,∵B2,B3,…,Bn是直线y=x上的点,
    ∴△OA1B1,△OA2B2,…△OAnBn都是等腰直角三角形,且
    A2B2=OA2=OB1=OA1;
    A3B3=OA3=OB2=OA2=OA1;
    A4B4=OA4=OB3=OA3=OA1;
    ……

    又∵点A1坐标为(1,0),∴OA1=1.∴,即点Bn的纵坐标为.
    16、67.1
    【解析】
    试题分析:∵图中是正八边形,
    ∴各内角度数和=(8﹣2)×180°=1080°,
    ∴∠HAB=1080°÷8=131°,
    ∴∠BAE=131°÷2=67.1°.
    故答案为67.1.
    考点:多边形的内角
    17、<
    【解析】
    ∵≈0.62,0.62<1,
    ∴<1;
    故答案为<.

    三、解答题(共7小题,满分69分)
    18、(1)9,9;(2)乙;(3)1680棵;
    【解析】
    (1)根据中位数定义:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数可得答案;(2)根据样本要具有代表性可得乙同学抽取的样本比较有代表性;(3)利用样本估计总体的方法计算即可.
    【详解】
    (1)表1中30位同学植树情况的中位数是9棵,表2中的众数是9棵;
    故答案为:9,9;
    (2)乙同学所抽取的样本能更好反映此次植树活动情况;
    故答案为:乙;
    (3)由题意可得:(3×6+6×7+3×8+12×9+6×10)÷30×200=1680(棵),
    答:本次活动200位同学一共植树1680棵.
    【点睛】
    本题考查了抽样调查,以及中位数,解题的关键是掌握中位数定义及抽样调查抽取的样本要具有代表性.
    19、(1);(2)(2)①见解析;②DM=DN,理由见解析;③数量关系:
    【解析】
    (1)先利用等腰三角形的性质和三角形内角和得到∠B=∠C=90°﹣α,然后利用互余可得到∠EDB=α;
    (2)①如图,利用∠EDF=180°﹣2α画图;
    ②先利用等腰三角形的性质得到DA平分∠BAC,再根据角平分线性质得到DE=DF,根据四边形内角和得到∠EDF=180°﹣2α,所以∠MDE=∠NDF,然后证明△MDE≌△NDF得到DM=DN;
    ③先由△MDE≌△NDF可得EM=FN,再证明△BDE≌△CDF得BE=CF,利用等量代换得到BM+CN=2BE,然后根据正弦定义得到BE=BDsinα,从而有BM+CN=BC•sinα.
    【详解】
    (1)∵AB=AC,∴∠B=∠C(180°﹣∠A)=90°﹣α.
    ∵DE⊥AB,∴∠DEB=90°,∴∠EDB=90°﹣∠B=90°﹣(90°﹣α)=α.
    故答案为:α;
    (2)①如图:

    ②DM=DN.理由如下:∵AB=AC,BD=DC,∴DA平分∠BAC.
    ∵DE⊥AB于点E,DF⊥AC于点F,∴DE=DF,∠MED=∠NFD=90°.
    ∵∠A=2α,∴∠EDF=180°﹣2α.
    ∵∠MDN=180°﹣2α,∴∠MDE=∠NDF.
    在△MDE和△NDF中,∵,∴△MDE≌△NDF,∴DM=DN;
    ③数量关系:BM+CN=BC•sinα.
    证明思路为:先由△MDE≌△NDF可得EM=FN,再证明△BDE≌△CDF得BE=CF,所以BM+CN=BE+EM+CF﹣FN=2BE,接着在Rt△BDE可得BE=BDsinα,从而有BM+CN=BC•sinα.
    【点睛】
    本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了等腰三角形的性质.
    20、(1)y=x2﹣x,点D的坐标为(2,﹣);(2)t=2;(3)M点的坐标为(2,0)或(6,0).
    【解析】
    (1)利用待定系数法求抛物线解析式;利用配方法把一般式化为顶点式得到点D的坐标;
    (2)连接AC,如图①,先计算出AB=4,则判断平行四边形OCBA为菱形,再证明△AOC和△ACB都是等边三角形,接着证明△OCM≌△ACN得到CM=CN,∠OCM=∠ACN,则判断△CMN为等边三角形得到MN=CM,于是△AMN的周长=OA+CM,由于CM⊥OA时,CM的值最小,△AMN的周长最小,从而得到t的值;
    (3)先利用勾股定理的逆定理证明△OCD为直角三角形,∠COD=90°,设M(t,0),则E(t,t2-t),根据相似三角形的判定方法,当时,△AME∽△COD,即|t-4|:4=|t2-t |:,当时,△AME∽△DOC,即|t-4|:=|t2-t |:4,然后分别解绝对值方程可得到对应的M点的坐标.
    【详解】
    解:(1)把A(4,0)和B(6,2)代入y=ax2+bx得
    ,解得,
    ∴抛物线解析式为y=x2-x;
    ∵y=x2-x =-2) 2-;
    ∴点D的坐标为(2,-);
    (2)连接AC,如图①,

    AB==4,
    而OA=4,
    ∴平行四边形OCBA为菱形,
    ∴OC=BC=4,
    ∴C(2,2),
    ∴AC==4,
    ∴OC=OA=AC=AB=BC,
    ∴△AOC和△ACB都是等边三角形,
    ∴∠AOC=∠COB=∠OCA=60°,
    而OC=AC,OM=AN,
    ∴△OCM≌△ACN,
    ∴CM=CN,∠OCM=∠ACN,
    ∵∠OCM+∠ACM=60°,
    ∴∠ACN+∠ACM=60°,
    ∴△CMN为等边三角形,
    ∴MN=CM,
    ∴△AMN的周长=AM+AN+MN=OM+AM+MN=OA+CM=4+CM,
    当CM⊥OA时,CM的值最小,△AMN的周长最小,此时OM=2,
    ∴t=2;
    (3)∵C(2,2),D(2,-),
    ∴CD=,
    ∵OD=,OC=4,
    ∴OD2+OC2=CD2,
    ∴△OCD为直角三角形,∠COD=90°,
    设M(t,0),则E(t,t2-t),
    ∵∠AME=∠COD,
    ∴当时,△AME∽△COD,即|t-4|:4=|t2-t |:,
    整理得|t2-t|=|t-4|,
    解方程t2-t =(t-4)得t1=4(舍去),t2=2,此时M点坐标为(2,0);
    解方程t2-t =-(t-4)得t1=4(舍去),t2=-2(舍去);
    当时,△AME∽△DOC,即|t-4|:=|t2-t |:4,整理得|t2-t |=|t-4|,
    解方程t2-t =t-4得t1=4(舍去),t2=6,此时M点坐标为(6,0);
    解方程t2-t =-(t-4)得t1=4(舍去),t2=-6(舍去);
    综上所述,M点的坐标为(2,0)或(6,0).
    【点睛】
    本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质、平行四边形的性质和菱形的判定与性质;会利用待定系数法求函数解析式;理解坐标与图形性质;熟练掌握相似三角形的判定方法;会运用分类讨论的思想解决数学问题.
    21、(1)(1)S=﹣m1﹣4m+4(﹣4<m<0)(3)(﹣3,1)、(,﹣1)、(,﹣1)
    【解析】
    (1)把点A的坐标代入抛物线的解析式,就可求得抛物线的解析式,根据A,C两点的坐标,可求得直线AC的函数解析式;
    (1)先过点D作DH⊥x轴于点H,运用割补法即可得到:四边形OCDA的面积=△ADH的面积+四边形OCDH的面积,据此列式计算化简就可求得S关于m的函数关系;
    (3)由于AC确定,可分AC是平行四边形的边和对角线两种情况讨论,得到点E与点C的纵坐标之间的关系,然后代入抛物线的解析式,就可得到满足条件的所有点E的坐标.
    【详解】
    (1)∵A(﹣4,0)在二次函数y=ax1﹣x+1(a≠0)的图象上,
    ∴0=16a+6+1,
    解得a=﹣,
    ∴抛物线的函数解析式为y=﹣x1﹣x+1;
    ∴点C的坐标为(0,1),
    设直线AC的解析式为y=kx+b,则

    解得,
    ∴直线AC的函数解析式为:;
    (1)∵点D(m,n)是抛物线在第二象限的部分上的一动点,
    ∴D(m,﹣m1﹣m+1),
    过点D作DH⊥x轴于点H,则DH=﹣m1﹣m+1,AH=m+4,HO=﹣m,
    ∵四边形OCDA的面积=△ADH的面积+四边形OCDH的面积,
    ∴S=(m+4)×(﹣m1﹣m+1)+(﹣m1﹣m+1+1)×(﹣m),
    化简,得S=﹣m1﹣4m+4(﹣4<m<0);
    (3)①若AC为平行四边形的一边,则C、E到AF的距离相等,
    ∴|yE|=|yC|=1,
    ∴yE=±1.
    当yE=1时,解方程﹣x1﹣x+1=1得,
    x1=0,x1=﹣3,
    ∴点E的坐标为(﹣3,1);
    当yE=﹣1时,解方程﹣x1﹣x+1=﹣1得,
    x1=,x1=,
    ∴点E的坐标为(,﹣1)或(,﹣1);
    ②若AC为平行四边形的一条对角线,则CE∥AF,
    ∴yE=yC=1,
    ∴点E的坐标为(﹣3,1).
    综上所述,满足条件的点E的坐标为(﹣3,1)、(,﹣1)、(,﹣1).

    22、AC= 6.0km,AB= 1.7km;
    【解析】
    在Rt△AOC, 由∠的正切值和OC的长求出OA, 在Rt△BOC, 由∠BCO的大小和OC的长求出OA,而AB=OB-0A,即可得到答案。
    【详解】
    由题意可得:∠AOC=90°,OC=5km.
    在Rt△AOC中,
    ∵AC=,
    ∴AC=≈6.0km,
    ∵tan34°=,
    ∴OA=OC•tan34°=5×0.67=3.35km,
    在Rt△BOC中,∠BCO=45°,
    ∴OB=OC=5km,
    ∴AB=5﹣3.35=1.65≈1.7km.
    答:AC的长为6.0km,AB的长为1.7km.
    【点睛】
    本题主要考查三角函数的知识。
    23、(1)y=140x+6000;(2)三种,答案见解析;(3)选择方案③进货时,经销商可获利最大,最大利润是13000元.
    【解析】
    (1)根据利润y=(A售价﹣A进价)x+(B售价﹣B进价)×(100﹣x)列式整理即可;
    (2)全部销售后利润不少于1.26万元得到一元一次不等式组,求出满足题意的x的正整数值即可;
    (3)利用y与x的函数关系式的增减性来选择哪种方案获利最大,并求此时的最大利润即可.
    【详解】
    解:(1)y=(900﹣700)x+(160﹣100)×(100﹣x)=140x+6000.
    由700x+100(100﹣x)≤40000得x≤50.
    ∴y与x之间的函数关系式为y=140x+6000(x≤50)
    (2)令y≥12600,即140x+6000≥12600,
    解得x≥47.1.
    又∵x≤50,∴经销商有以下三种进货方案:
    方案
    A品牌(块)
    B品牌(块)

    48
    52

    49
    51

    50
    50
    (3)∵140>0,∴y随x的增大而增大.
    ∴x=50时y取得最大值.
    又∵140×50+6000=13000,
    ∴选择方案③进货时,经销商可获利最大,最大利润是13000元.
    【点睛】
    本题考查由实际问题列函数关系式;一元一次不等式的应用;一次函数的应用.
    24、(1)汽车行驶400千米,剩余油量30升,加满油时,油量为70升;(2)已行驶的路程为650千米.
    【解析】
    (1)观察图象,即可得到油箱内的剩余油量,根据耗油量计算出加满油时油箱的油量;
    用待定系数法求出一次函数解析式,再代入进行运算即可.
    【详解】
    (1)汽车行驶400千米,剩余油量30升,

    即加满油时,油量为70升.
    (2)设,把点,坐标分别代入得,,
    ∴,当时,,即已行驶的路程为650千米.
    【点睛】
    本题主要考查了待定系数法求一次函数解析式,一次函数图象上点的坐标特征等,关键是掌握待定系数法求函数解析式.

    相关试卷

    江苏省泰兴市实验达标名校2021-2022学年中考数学模拟精编试卷含解析: 这是一份江苏省泰兴市实验达标名校2021-2022学年中考数学模拟精编试卷含解析,共18页。试卷主要包含了计算的结果是,4的平方根是等内容,欢迎下载使用。

    广东省广州各区达标名校2021-2022学年中考数学模拟精编试卷含解析: 这是一份广东省广州各区达标名校2021-2022学年中考数学模拟精编试卷含解析,共17页。试卷主要包含了考生必须保证答题卡的整洁,下列命题是真命题的是等内容,欢迎下载使用。

    广西龙胜县重点达标名校2021-2022学年中考数学模拟精编试卷含解析: 这是一份广西龙胜县重点达标名校2021-2022学年中考数学模拟精编试卷含解析,共20页。试卷主要包含了答题时请按要求用笔,点P等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map