![陕西省西安市陕西西安高新第二校2021-2022学年中考三模数学试题含解析第1页](http://img-preview.51jiaoxi.com/2/3/13580488/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![陕西省西安市陕西西安高新第二校2021-2022学年中考三模数学试题含解析第2页](http://img-preview.51jiaoxi.com/2/3/13580488/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![陕西省西安市陕西西安高新第二校2021-2022学年中考三模数学试题含解析第3页](http://img-preview.51jiaoxi.com/2/3/13580488/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
陕西省西安市陕西西安高新第二校2021-2022学年中考三模数学试题含解析
展开
这是一份陕西省西安市陕西西安高新第二校2021-2022学年中考三模数学试题含解析,共20页。试卷主要包含了若一次函数y=等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(共10小题,每小题3分,共30分)
1.将抛物线向左平移1个单位,再向下平移3个单位后所得抛物线的解析式为( )
A. B. C. D.
2.下列四个图形分别是四届国际数学家大会的会标,其中属于中心对称图形的有( )
A.1个 B.2个 C.3个 D.4个
3.如图,在边长为2的正方形ABCD中剪去一个边长为1的小正方形CEFG,动点P从点A出发,沿A→D→E→F→G→B的路线绕多边形的边匀速运动到点B时停止(不含点A和点B),则△ABP的面积S随着时间t变化的函数图象大致是( )
A. B. C. D.
4.在下列交通标志中,既是轴对称图形,又是中心对称图形的是( )
A. B. C. D.
5.观察下面“品”字形中各数之间的规律,根据观察到的规律得出a的值为( )
A.23 B.75 C.77 D.139
6.在﹣3,﹣1,0,1四个数中,比﹣2小的数是( )
A.﹣3 B.﹣1 C.0 D.1
7.用6个相同的小正方体搭成一个几何体,若它的俯视图如图所示,则它的主视图不可能是( )
A. B. C. D.
8.若一次函数y=(2m﹣3)x﹣1+m的图象不经过第三象限,则m的取值范图是( )
A.1<m< B.1≤m< C.1<m≤ D.1≤m≤
9.在一个不透明的盒子里有2个红球和n个白球,这些球除颜色外其余完全相同,摇匀后随机摸出一个,摸到红球的概率是,则n的值为( )
A.10 B.8 C.5 D.3
10.如图,四边形ABCD中,AC⊥BC,AD∥BC,BC=3,AC=4,AD=1.M是BD的中点,则CM的长为( )
A. B.2 C. D.3
二、填空题(本大题共6个小题,每小题3分,共18分)
11.如图,在□ABCD中,用直尺和圆规作∠BAD的平分线AG,若AD=5,DE=6,则AG的长是________.
12.如图,有一块边长为4的正方形塑料模板ABCD,将一块足够大的直角三角板的直角顶点落在A点,两条直角边分别与CD交于点F,与CB延长线交于点E.则四边形AECF的面积是 .
13.如图,在△ABC中,AB≠AC.D,E分别为边AB,AC上的点.AC=3AD,AB=3AE,点F为BC边上一点,添加一个条件:______,可以使得△FDB与△ADE相似.(只需写出一个)
14.有下列等式:①由a=b,得5﹣2a=5﹣2b;②由a=b,得ac=bc;③由a=b,得;④由,得3a=2b;
⑤由a2=b2,得a=b.其中正确的是_____.
15.如图,把△ABC绕点C顺时针旋转得到△A'B'C',此时A′B′⊥AC于D,已知∠A=50°,则∠B′CB的度数是_____°.
16.如图,CD是⊙O直径,AB是弦,若CD⊥AB,∠BCD=25°,则∠AOD=_____°.
三、解答题(共8题,共72分)
17.(8分)图1、图2是两张形状和大小完全相同的方格纸,方格纸中每个小正方形的边长均为1,线段AC的两个端点均在小正方形的顶点上.
(1)如图1,点P在小正方形的顶点上,在图1中作出点P关于直线AC的对称点Q,连接AQ、QC、CP、PA,并直接写出四边形AQCP的周长;
(2)在图2中画出一个以线段AC为对角线、面积为6的矩形ABCD,且点B和点D均在小正方形的顶点上.
18.(8分)已知:如图,在梯形ABCD中,AD∥BC,AB=DC,E是对角线AC上一点,且AC·CE=AD·BC.
(1)求证:∠DCA=∠EBC;
(2)延长BE交AD于F,求证:AB2=AF·AD.
19.(8分)为了解中学生“平均每天体育锻炼时间”的情况,某地区教育部门随机调查了若干名中学生,根据调查结果制作统计图①和图②,请根据相关信息,解答下列问题:
本次接受随机抽样调查的中学生人数为_______,图①中m的值是_____ ;求本次调查获取的样本数据的平均数、众数和中位数;根据统计数据,估计该地区250000名中学生中,每天在校体育锻炼时间大于等于1.5h的人数.
20.(8分)如图,一次函数的图象与反比例函数(为常数,且)的图象交于A(1,a)、B两点.
求反比例函数的表达式及点B的坐标;在x轴上找一点P,使PA+PB的值最小,求满足条件的点P的坐标及△PAB的面积.
21.(8分)如今很多初中生购买饮品饮用,既影响身体健康又给家庭增加不必要的开销,为此数学兴趣小组对本班同学一天饮用饮品的情况进行了调查,大致可分为四种:
A:自带白开水;B:瓶装矿泉水;C:碳酸饮料;D:非碳酸饮料.
根据统计结果绘制如下两个统计图(如图),根据统计图提供的信息,解答下列问题:
(1)请你补全条形统计图;
(2)在扇形统计图中,求“碳酸饮料”所在的扇形的圆心角的度数;
(3)为了养成良好的生活习惯,班主任决定在自带白开水的5名同学(男生2人,女生3人)中随机抽取2名同学担任生活监督员,请用列表法或树状图法求出恰好抽到一男一女的概率.
22.(10分)在△ABC中,,以边AB上一点O为圆心,OA为半径的圈与BC相切于点D,分别交AB,AC于点E,F如图①,连接AD,若,求∠B的大小;如图②,若点F为的中点,的半径为2,求AB的长.
23.(12分)如图,已知点D在反比例函数y=的图象上,过点D作x轴的平行线交y轴于点B(0,3).过点A(5,0)的直线y=kx+b与y轴于点C,且BD=OC,tan∠OAC=.
(1)求反比例函数y=和直线y=kx+b的解析式;
(2)连接CD,试判断线段AC与线段CD的关系,并说明理由;
(3)点E为x轴上点A右侧的一点,且AE=OC,连接BE交直线CA与点M,求∠BMC的度数.
24.如图,在Rt△ABC中,AB=AC,D、E是斜边BC上的两点,∠EAD=45°,将△ADC绕点A顺时针旋转90°,得到△AFB,连接EF.求证:EF=ED;若AB=2,CD=1,求FE的长.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、D
【解析】
根据“左加右减、上加下减”的原则,
将抛物线向左平移1个单位所得直线解析式为:;
再向下平移3个单位为:.故选D.
2、B
【解析】
解:根据中心对称的概念可得第一个图形是中心对称图形,第二个图形不是中心对称图形,第三个图形是中心对称图形,第四个图形不是中心对称图形,所以,中心对称图有2个.
故选B.
【点睛】
本题考查中心对称图形的识别,掌握中心对称图形的概念是本题的解题关键.
3、B
【解析】
解:当点P在AD上时,△ABP的底AB不变,高增大,所以△ABP的面积S随着时间t的增大而增大;
当点P在DE上时,△ABP的底AB不变,高不变,所以△ABP的面积S不变;
当点P在EF上时,△ABP的底AB不变,高减小,所以△ABP的面积S随着时间t的减小而减小;
当点P在FG上时,△ABP的底AB不变,高不变,所以△ABP的面积S不变;
当点P在GB上时,△ABP的底AB不变,高减小,所以△ABP的面积S随着时间t的减小而减小;
故选B.
4、C
【解析】
根据轴对称图形和中心对称图形的定义进行分析即可.
【详解】
A、不是轴对称图形,也不是中心对称图形.故此选项错误;
B、不是轴对称图形,也不是中心对称图形.故此选项错误;
C、是轴对称图形,也是中心对称图形.故此选项正确;
D、是轴对称图形,但不是中心对称图形.故此选项错误.
故选C.
【点睛】
考点:1、中心对称图形;2、轴对称图形
5、B
【解析】
由图可知:上边的数与左边的数的和正好等于右边的数,上边的数为连续的奇数,左边的数为21,22,23,…26,由此可得a,b.
【详解】
∵上边的数为连续的奇数1,3,5,7,9,11,左边的数为21,22,23,…,∴b=26=1.
∵上边的数与左边的数的和正好等于右边的数,∴a=11+1=2.
故选B.
【点睛】
本题考查了数字变化规律,观察出上边的数与左边的数的和正好等于右边的数是解题的关键.
6、A
【解析】
因为正数是比0大的数,负数是比0小的数,正数比负数大;负数的绝对值越大,本身就越小,根据有理数比较大小的法则即可选出答案.
【详解】
因为正数是比0大的数,负数是比0小的数,正数比负数大;负数的绝对值越大,本身就越小,
所以在-3,-1,0,1这四个数中比-2小的数是-3,
故选A.
【点睛】
本题主要考查有理数比较大小,解决本题的关键是要熟练掌握比较有理数大小的方法.
7、D
【解析】
分析:根据主视图和俯视图之间的关系可以得出答案.
详解: ∵主视图和俯视图的长要相等, ∴只有D选项中的长和俯视图不相等,故选D.
点睛:本题主要考查的就是三视图的画法,属于基础题型.三视图的画法为:主视图和俯视图的长要相等;主视图和左视图的高要相等;左视图和俯视图的宽要相等.
8、B
【解析】
根据一次函数的性质,根据不等式组即可解决问题;
【详解】
∵一次函数y=(2m-3)x-1+m的图象不经过第三象限,
∴,
解得1≤m<.
故选:B.
【点睛】
本题考查一次函数的图象与系数的关系等知识,解题的关键是学会用转化的思想思考问题,属于中考常考题型.
9、B
【解析】
∵摸到红球的概率为,
∴,
解得n=8,
故选B.
10、C
【解析】
延长BC 到E 使BE=AD,利用中点的性质得到CM= DE=AB,再利用勾股定理进行计算即可解答.
【详解】
解:延长BC 到E 使BE=AD,∵BC//AD,∴四边形ACED是平行四边形,∴DE=AB,
∵BC=3,AD=1,
∴C是BE的中点,
∵M是BD的中点,
∴CM= DE=AB,
∵AC⊥BC,
∴AB==,
∴CM= ,
故选:C.
【点睛】
此题考查平行四边形的性质,勾股定理,解题关键在于作辅助线.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、2
【解析】
试题解析:连接EG,
∵由作图可知AD=AE,AG是∠BAD的平分线,
∴∠1=∠2,
∴AG⊥DE,OD=DE=1.
∵四边形ABCD是平行四边形,
∴CD∥AB,
∴∠2=∠1,
∴∠1=∠1,
∴AD=DG.
∵AG⊥DE,
∴OA=AG.
在Rt△AOD中,OA==4,
∴AG=2AO=2.
故答案为2.
12、1
【解析】
∵四边形ABCD为正方形,
∴∠D=∠ABC=90°,AD=AB,
∴∠ABE=∠D=90°,
∵∠EAF=90°,
∴∠DAF+∠BAF=90°,∠BAE+∠BAF=90°,
∴∠DAF=∠BAE,
∴△AEB≌△AFD,
∴S△AEB=S△AFD,
∴它们都加上四边形ABCF的面积,
可得到四边形AECF的面积=正方形的面积=1.
13、或
【解析】
因为,, ,所以 ,欲使与相似,只需要与相似即可,则可以添加的条件有:∠A=∠BDF,或者∠C=∠BDF,等等,答案不唯一.
【方法点睛】在解决本题目,直接处理与,无从下手,没有公共边或者公共角,稍作转化,通过,与相似.这时,柳暗花明,迎刃而解.
14、①②④
【解析】
①由a=b,得5﹣2a=5﹣2b,根据等式的性质先将式子两边同时乘以-2,再将等式两边同时加上5,等式仍成立,所以本选项正确,
②由a=b,得ac=bc,根据等式的性质,等式两边同时乘以相同的式子,等式仍成立,所以本选项正确,
③由a=b,得,根据等式的性质,等式两边同时除以一个不为0的数或式子,等式仍成立,因为可能为0,所以本选项不正确,
④由,得3a=2b, 根据等式的性质,等式两边同时乘以相同的式子6c,等式仍成立,所以本选项正确,
⑤因为互为相反数的平方也相等,由a2=b2,得a=b,或a=-b,所以本选项错误,
故答案为: ①②④.
15、1
【解析】
由旋转的性质可得∠A=∠A'=50°,∠BCB'=∠ACA',由直角三角形的性质可求∠ACA'=1°=∠B′CB.
【详解】
解:∵把△ABC绕点C顺时针旋转得到△A'B'C',
∴∠A=∠A'=50°,∠BCB'=∠ACA'
∵A'B'⊥AC
∴∠A'+∠ACA'=90°
∴∠ACA'=1°
∴∠BCB'=1°
故答案为:1.
【点睛】
本题考查了旋转的性质,熟练运用旋转的性质是本题的关键.
16、50
【解析】
由CD是⊙O的直径,弦AB⊥CD,根据垂径定理的即可求得
=,又由圆周角定理,可得∠AOD=50°.
【详解】
∵CD是⊙O的直径,弦AB⊥CD,
∴=,
∵∠BCD=25°=,
∴∠AOD=2∠BCD=50°,
故答案为50
【点睛】
本题考查角度的求解,解题的关键是利用垂径定理.
三、解答题(共8题,共72分)
17、(1)作图见解析;;(2)作图见解析.
【解析】
试题分析:(1)通过数格子可得到点P关于AC的对称点,再直接利用勾股定理可得到周长;(2)利用网格结合矩形的性质以及勾股定理可画出矩形.
试题解析:(1)如图1所示:四边形AQCP即为所求,它的周长为:;(2)如图2所示:四边形ABCD即为所求.
考点:1轴对称;2勾股定理.
18、 (1)见解析;(2)见解析.
【解析】
(1)由AD∥BC得∠DAC=∠BCA, 又∵AC·CE=AD·BC∴,∴△ACD∽△CBE ,
∴∠DCA=∠EBC,
(2)由题中条件易证得△ABF∽△DAC∴,又∵AB=DC,∴
【详解】
证明:
(1)∵AD∥BC,
∴∠DAC=∠BCA,
∵AC·CE=AD·BC,
∴,
∴△ACD∽△CBE ,
∴∠DCA=∠EBC,
(2)∵AD∥BC,
∴∠AFB=∠EBC,
∵∠DCA=∠EBC,
∴∠AFB=∠DCA,
∵AD∥BC,AB=DC,
∴∠BAD=∠ADC,
∴△ABF∽△DAC,
∴,
∵AB=DC,
∴.
【点睛】
本题重点考查了平行线的性质和三角形相似的判定,灵活运用所学知识是解题的关键.
19、(1)250、12;(2)平均数:1.38h;众数:1.5h;中位数:1.5h;(3)160000人;
【解析】
(1) 根据题意, 本次接受调查的学生总人数为各个金额人数之和, 用总概率减去其他金额的概率即可求得m值.
(2) 平均数为一组数据中所有数据之和再除以这组数据的个数; 众数是在一组数据中出现次数最多的数; 中位数是将一组数据按大小顺序排列, 处于最中间位置的一个数据, 或是最中间两个数据的平均数, 据此求解即可.
(3) 根据样本估计总体, 用“每天在校体育锻炼时间大于等于1.5h的人数” 的概率乘以全校总人数求解即可.
【详解】
(1)本次接受随机抽样调查的中学生人数为60÷24%=250人,
m=100﹣(24+48+8+8)=12,
故答案为250、12;
(2)平均数为=1.38(h),
众数为1.5h,中位数为=1.5h;
(3)估计每天在校体育锻炼时间大于等于1.5h的人数约为250000×=160000人.
【点睛】
本题主要考查数据的收集、 处理以及统计图表.
20、(1),;(2)P,.
【解析】
试题分析:(1)由点A在一次函数图象上,结合一次函数解析式可求出点A的坐标,再由点A的坐标利用待定系数法即可求出反比例函数解析式,联立两函数解析式成方程组,解方程组即可求出点B坐标;
(2)作点B作关于x轴的对称点D,交x轴于点C,连接AD,交x轴于点P,连接PB.由点B、D的对称性结合点B的坐标找出点D的坐标,设直线AD的解析式为y=mx+n,结合点A、D的坐标利用待定系数法求出直线AD的解析式,令直线AD的解析式中y=0求出点P的坐标,再通过分割图形结合三角形的面积公式即可得出结论.
试题解析:(1)把点A(1,a)代入一次函数y=-x+4,
得:a=-1+4,解得:a=3,
∴点A的坐标为(1,3).
把点A(1,3)代入反比例函数y=,
得:3=k,
∴反比例函数的表达式y=,
联立两个函数关系式成方程组得:,
解得:,或,
∴点B的坐标为(3,1).
(2)作点B作关于x轴的对称点D,交x轴于点C,连接AD,交x轴于点P,此时PA+PB的值最小,连接PB,如图所示.
∵点B、D关于x轴对称,点B的坐标为(3,1),
∴点D的坐标为(3,- 1).
设直线AD的解析式为y=mx+n,
把A,D两点代入得:,
解得:,
∴直线AD的解析式为y=-2x+1.
令y=-2x+1中y=0,则-2x+1=0,
解得:x=,
∴点P的坐标为(,0).
S△PAB=S△ABD-S△PBD=BD•(xB-xA)-BD•(xB-xP)
=×[1-(-1)]×(3-1)-×[1-(-1)]×(3-)
=.
考点:1.反比例函数与一次函数的交点问题;2.待定系数法求一次函数解析式;3.轴对称-最短路线问题.
21、(1)详见解析;(2)72°;(3)
【解析】
(1)由B类型的人数及其百分比求得总人数,在用总人数减去其余各组人数得出C类型人数,即可补全条形图;
(2)用360°乘以C类别人数所占比例即可得;
(3)用列表法或画树状图法列出所有等可能结果,从中确定恰好抽到一男一女的结果数,根据概率公式求解可得.
【详解】
解:(1)∵ 抽 查的总人数为:(人)
∴ 类人数为:(人)
补全条形统计图如下:
(2)“碳酸饮料”所在的扇形的圆心角度数为:
(3)设男生为、,女生为、、,
画树状图得:
∴恰好抽到一男一女的情况共有12 种,分别是
∴ (恰好抽到一男一女).
【点睛】
本题考查的是条形统计图和扇形统计图的综合运用以及概率的求法,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
22、 (1)∠B=40°;(2)AB= 6.
【解析】
(1)连接OD,由在△ABC中, ∠C=90°,BC是切线,易得AC∥OD ,即可求得∠CAD=∠ADO ,继而求得答案;
(2)首先连接OF,OD,由AC∥OD得∠OFA=∠FOD ,由点F为弧AD的中点,易得△AOF是等边三角形,继而求得答案.
【详解】
解:(1)如解图①,连接OD,
∵BC切⊙O于点D,
∴∠ODB=90°,
∵∠C=90°,
∴AC∥OD,
∴∠CAD=∠ADO,
∵OA=OD,
∴∠DAO=∠ADO=∠CAD=25°,
∴∠DOB=∠CAO=∠CAD+∠DAO=50°,
∵∠ODB=90°,
∴∠B=90°-∠DOB=90°-50°=40°;
(2)如解图②,连接OF,OD,
∵AC∥OD,
∴∠OFA=∠FOD,
∵点F为弧AD的中点,
∴∠AOF=∠FOD,
∴∠OFA=∠AOF,
∴AF=OA,
∵OA=OF,
∴△AOF为等边三角形,
∴∠FAO=60°,则∠DOB=60°,
∴∠B=30°,
∵在Rt△ODB中,OD=2,
∴OB=4,
∴AB=AO+OB=2+4=6.
【点睛】
本题考查了切线的性质,平行线的性质,等腰三角形的性质,弧弦圆心角的关系,等边三角形的判定与性质,含30°角的直角三角形的性质.熟练掌握切线的性质是解(1)的关键,证明△AOF为等边三角形是解(2)的关键.
23、(1),(2)AC⊥CD(3)∠BMC=41°
【解析】
分析:(1)由A点坐标可求得OA的长,再利用三角函数的定义可求得OC的长,可求得C、D点坐标,再利用待定系数法可求得直线AC的解析式;
(2)由条件可证明△OAC≌△BCD,再由角的和差可求得∠OAC+∠BCA=90°,可证得AC⊥CD;(3)连接AD,可证得四边形AEBD为平行四边形,可得出△ACD为等腰直角三角形,则可求得答案.
本题解析:
(1)∵A(1,0),∴OA=1.∵tan∠OAC=,∴,解得OC=2,
∴C(0,﹣2),∴BD=OC=2,∵B(0,3),BD∥x轴,∴D(﹣2,3),
∴m=﹣2×3=﹣6,∴y=﹣,
设直线AC关系式为y=kx+b,∵过A(1,0),C(0,﹣2),
∴,解得,∴y=x﹣2;
(2)∵B(0,3),C(0,﹣2),∴BC=1=OA,
在△OAC和△BCD中
,∴△OAC≌△BCD(SAS),∴AC=CD,
∴∠OAC=∠BCD,∴∠BCD+∠BCA=∠OAC+∠BCA=90°,
∴AC⊥CD;
(3)∠BMC=41°.
如图,连接AD,
∵AE=OC,BD=OC,AE=BD,∴BD∥x轴,
∴四边形AEBD为平行四边形,
∴AD∥BM,∴∠BMC=∠DAC,
∵△OAC≌△BCD,∴AC=CD,
∵AC⊥CD,∴△ACD为等腰直角三角形,
∴∠BMC=∠DAC=41°.
24、(1)见解析;(2)EF=.
【解析】
(1)由旋转的性质可求∠FAE=∠DAE=45°,即可证△AEF≌△AED,可得EF=ED;
(2)由旋转的性质可证∠FBE=90°,利用勾股定理和方程的思想可求EF的长.
【详解】
(1)∵∠BAC=90°,∠EAD=45°,
∴∠BAE+∠DAC=45°,
∵将△ADC绕点A顺时针旋转90°,得到△AFB,
∴∠BAF=∠DAC,AF=AD,CD=BF,∠ABF=∠ACD=45°,
∴∠BAF+∠BAE=45°=∠FAE,
∴∠FAE=∠DAE,AD=AF,AE=AE,
∴△AEF≌△AED(SAS),
∴DE=EF
(2)∵AB=AC=2,∠BAC=90°,
∴BC=4,
∵CD=1,
∴BF=1,BD=3,即BE+DE=3,
∵∠ABF=∠ABC=45°,
∴∠EBF=90°,
∴BF2+BE2=EF2,
∴1+(3﹣EF)2=EF2,
∴EF=
【点睛】
本题考查了旋转的性质,等腰直角三角形的性质,全等三角形的判定和性质,勾股定理等知识,利用方程的思想解决问题是本题的关键.
相关试卷
这是一份2023年陕西省西安市雁塔区高新唐南中学中考数学五模试卷(含解析),共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2023年陕西省西安市西安高新第一中学中考八模数学试题(含解析),共21页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
这是一份2023年陕西省西安市雁塔区高新唐南中学中考数学五模试卷(含解析),共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。