|试卷下载
搜索
    上传资料 赚现金
    陕西省华阴市2022年中考数学五模试卷含解析
    立即下载
    加入资料篮
    陕西省华阴市2022年中考数学五模试卷含解析01
    陕西省华阴市2022年中考数学五模试卷含解析02
    陕西省华阴市2022年中考数学五模试卷含解析03
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    陕西省华阴市2022年中考数学五模试卷含解析

    展开
    这是一份陕西省华阴市2022年中考数学五模试卷含解析,共23页。试卷主要包含了- 的绝对值是等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项:
    1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
    2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
    3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
    4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

    一、选择题(共10小题,每小题3分,共30分)
    1.如图,平行四边形ABCD中,E,F分别为AD,BC边上的一点,增加下列条件,不一定能得出BE∥DF的是(  )

    A.AE=CF B.BE=DF C.∠EBF=∠FDE D.∠BED=∠BFD
    2.估计的值在 ( )
    A.4和5之间 B.5和6之间
    C.6和7之间 D.7和8之间
    3.将抛物线向左平移2个单位长度,再向下平移3个单位长度,得到的抛物线的函数表达式为( )
    A.
    B.
    C.
    D.
    4.若一组数据2,3,4,5,x的平均数与中位数相等,则实数x的值不可能是( )
    A.6 B.3.5 C.2.5 D.1
    5.如图所示的几何体,上下部分均为圆柱体,其左视图是( )

    A. B. C. D.
    6.如图,点D在△ABC边延长线上,点O是边AC上一个动点,过O作直线EF∥BC,交∠BCA的平分线于点F,交∠BCA的外角平分线于E,当点O在线段AC上移动(不与点A,C重合)时,下列结论不一定成立的是(  )

    A.2∠ACE=∠BAC+∠B B.EF=2OC C.∠FCE=90° D.四边形AFCE是矩形
    7.如图,已知两个全等的直角三角形纸片的直角边分别为、,将这两个三角形的一组等边重合,拼合成一个无重叠的几何图形,其中轴对称图形有( )

    A.3个; B.4个; C.5个; D.6个.
    8.- 的绝对值是( )
    A.-4 B. C.4 D.0.4
    9.如图,△ABC中,∠CAB=65°,在同一平面内,将△ABC绕点A旋转到△AED的位置,使得DC∥AB,则∠BAE等于( )

    A.30° B.40° C.50° D.60°
    10.如图,二次函数y=ax2+bx+c(a≠0)的图象经过点(1,2)且与x轴交点的横坐标分别为x1,x2,其中﹣1<x1<0,1<x2<2,下列结论:4a+2b+c<0,2a+b<0,b2+8a>4ac,a<﹣1,其中结论正确的有(  )

    A.1个 B.2个 C.3个 D.4个
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.有一个正六面体,六个面上分别写有1~6这6个整数,投掷这个正六面体一次,向上一面的数字是2的倍数或3的倍数的概率是____.
    12.分解因式:4m2﹣16n2=_____.
    13.如图所示,直线y=x+1(记为l1)与直线y=mx+n(记为l2)相交于点P(a,2),则关于x的不等式x+1≥mx+n的解集为__________.

    14.用换元法解方程时,如果设,那么原方程化成以为“元”的方程是________.
    15.如图,在矩形ABCD中,E、F分别是AD、CD的中点,沿着BE将△ABE折叠,点A刚好落在BF上,若AB=2,则AD=________.

    16.一元二次方程x﹣1=x2﹣1的根是_____.
    三、解答题(共8题,共72分)
    17.(8分)如图所示,在▱ABCD中,E是CD延长线上的一点,BE与AD交于点F,DE=CD.
    (1)求证:△ABF∽△CEB;
    (2)若△DEF的面积为2,求▱ABCD的面积.

    18.(8分)如图,在等腰△ABC中,AB=BC,以AB为直径的⊙O与AC相交于点D,过点D作DE⊥BC交AB延长线于点E,垂足为点F.

    (1)证明:DE是⊙O的切线;
    (2)若BE=4,∠E=30°,求由、线段BE和线段DE所围成图形(阴影部分)的面积,
    (3)若⊙O的半径r=5,sinA=,求线段EF的长.
    19.(8分)如图,河的两岸MN与PQ相互平行,点A,B是PQ上的两点,C是MN上的点,某人在点A处测得∠CAQ=30°,再沿AQ方向前进20米到达点B,某人在点A处测得∠CAQ=30°,再沿AQ方向前进20米到达点B,测得∠CBQ=60°,求这条河的宽是多少米?(结果精确到0.1米,参考数据≈1.414,≈1.732)

    20.(8分)某品牌手机去年每台的售价y(元)与月份x之间满足函数关系:y=﹣50x+2600,去年的月销量p(万台)与月份x之间成一次函数关系,其中1﹣6月份的销售情况如下表:
    月份(x)
    1月
    2月
    3月
    4月
    5月
    6月
    销售量(p)
    3.9万台
    4.0万台
    4.1万台
    4.2万台
    4.3万台
    4.4万台
    (1)求p关于x的函数关系式;
    (2)求该品牌手机在去年哪个月的销售金额最大?最大是多少万元?
    (3)今年1月份该品牌手机的售价比去年12月份下降了m%,而销售量也比去年12月份下降了1.5m%.今年2月份,经销商决定对该手机以1月份价格的“八折”销售,这样2月份的销售量比今年1月份增加了1.5万台.若今年2月份这种品牌手机的销售额为6400万元,求m的值.
    21.(8分)在平面直角坐标系xOy中,函数(x>0)的图象与直线l1:y=x+b交于点A(3,a-2).
    (1)求a,b的值;
    (2)直线l2:y=-x+m与x轴交于点B,与直线l1交于点C,若S△ABC≥6,求m的取值范围.
    22.(10分)如图,直线y=﹣x+3分别与x轴、y交于点B、C;抛物线y=x2+bx+c经过点B、C,与x轴的另一个交点为点A(点A在点B的左侧),对称轴为l1,顶点为D.

    (1)求抛物线y=x2+bx+c的解析式.
    (2)点M(1,m)为y轴上一动点,过点M作直线l2平行于x轴,与抛物线交于点P(x1,y1),Q(x2,y2),与直线BC交于点N(x3,y3),且x2>x1>1.
    ①结合函数的图象,求x3的取值范围;
    ②若三个点P、Q、N中恰好有一点是其他两点所连线段的中点,求m的值.
    23.(12分)今年 3 月 12 日植树节期间, 学校预购进 A、B 两种树苗,若购进 A种树苗 3 棵,B 种树苗 5 棵,需 2100 元,若购进 A 种树苗 4 棵,B 种树苗 10棵,需 3800 元.
    (1)求购进 A、B 两种树苗的单价;
    (2)若该单位准备用不多于 8000 元的钱购进这两种树苗共 30 棵,求 A 种树苗至少需购进多少棵?
    24.已知:如图,在正方形ABCD中,点E、F分别是AB、BC边的中点,AF与CE交点G,求证:AG=CG.




    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、B
    【解析】
    由四边形ABCD是平行四边形,可得AD//BC,AD=BC,然后由AE=CF,∠EBF=∠FDE,∠BED=∠BFD均可判定四边形BFDE是平行四边形,则可证得BE//DF,利用排除法即可求得答案.
    【详解】
    四边形ABCD是平行四边形,
    ∴AD//BC,AD=BC,
    A、∵AE=CF,
    ∴DE=BF,
    ∴四边形BFDE是平行四边形,
    ∴BE//DF,故本选项能判定BE//DF;
    B、∵BE=DF,
    四边形BFDE是等腰梯形,
    本选项不一定能判定BE//DF;
    C、∵AD//BC,
    ∴∠BED+∠EBF=180°,∠EDF+∠BFD=180°,
    ∵∠EBF=∠FDE,
    ∴∠BED=∠BFD,
    四边形BFDE是平行四边形,
    ∴BE//DF,
    故本选项能判定BE//DF;
    D、∵AD//BC,
    ∴∠BED+∠EBF=180°,∠EDF+∠BFD=180°,
    ∵∠BED=∠BFD,
    ∴∠EBF=∠FDE,
    ∴四边形BFDE是平行四边形,
    ∴BE//DF,故本选项能判定BE//DF.
    故选B.
    【点睛】
    本题考查了平行四边形的判定与性质,注意根据题意证得四边形BFDE是平行四边形是关键.
    2、C
    【解析】
    根据 ,可以估算出位于哪两个整数之间,从而可以解答本题.
    【详解】
    解:∵

    故选:C.
    【点睛】
    本题考查估算无理数的大小,解题的关键是明确估算无理数大小的方法.
    3、A
    【解析】
    先确定抛物线y=x2的顶点坐标为(0,0),再根据点平移的规律得到点(0,0)平移后所得对应点的坐标为(-2,-1),然后根据顶点式写出平移后的抛物线解析式.
    【详解】
    抛物线y=x2的顶点坐标为(0,0),把点(0,0)向左平移1个单位,再向下平移2个单位长度所得对应点的坐标为(-2,-1),所以平移后的抛物线解析式为y=(x+2)2-1.
    故选A.
    4、C
    【解析】
    因为中位数的值与大小排列顺序有关,而此题中x的大小位置未定,故应该分类讨论x所处的所有位置情况:从小到大(或从大到小)排列在中间;结尾;开始的位置.
    【详解】
    (1)将这组数据从小到大的顺序排列为2,3,4,5,x,
    处于中间位置的数是4,
    ∴中位数是4,
    平均数为(2+3+4+5+x)÷5,
    ∴4=(2+3+4+5+x)÷5,
    解得x=6;符合排列顺序;
    (2)将这组数据从小到大的顺序排列后2,3,4,x,5,
    中位数是4,
    此时平均数是(2+3+4+5+x)÷5=4,
    解得x=6,不符合排列顺序;
    (3)将这组数据从小到大的顺序排列后2,3,x,4,5,
    中位数是x,
    平均数(2+3+4+5+x)÷5=x,
    解得x=3.5,符合排列顺序;
    (4)将这组数据从小到大的顺序排列后2,x,3,4,5,
    中位数是3,
    平均数(2+3+4+5+x)÷5=3,
    解得x=1,不符合排列顺序;
    (5)将这组数据从小到大的顺序排列后x,2,3,4,5,
    中位数是3,
    平均数(2+3+4+5+x)÷5=3,
    解得x=1,符合排列顺序;
    ∴x的值为6、3.5或1.
    故选C.
    【点睛】
    考查了确定一组数据的中位数,涉及到分类讨论思想,较难,要明确中位数的值与大小排列顺序有关,一些学生往往对这个概念掌握不清楚,计算方法不明确而解答不完整.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数.如果数据有奇数个,则正中间的数字即为所求;如果是偶数个,则找中间两位数的平均数.
    5、C
    【解析】
    试题分析:∵该几何体上下部分均为圆柱体,∴其左视图为矩形,故选C.
    考点:简单组合体的三视图.
    6、D
    【解析】
    依据三角形外角性质,角平分线的定义,以及平行线的性质,即可得到2∠ACE=∠BAC+∠B,EF=2OC,∠FCE=90°,进而得到结论.
    【详解】
    解:∵∠ACD是△ABC的外角,
    ∴∠ACD=∠BAC+∠B,
    ∵CE平分∠DCA,
    ∴∠ACD=2∠ACE,
    ∴2∠ACE=∠BAC+∠B,故A选项正确;
    ∵EF∥BC,CF平分∠BCA,
    ∴∠BCF=∠CFE,∠BCF=∠ACF,
    ∴∠ACF=∠EFC,
    ∴OF=OC,
    同理可得OE=OC,
    ∴EF=2OC,故B选项正确;
    ∵CF平分∠BCA,CE平分∠ACD,
    ∴∠ECF=∠ACE+∠ACF=×180°=90°,故C选项正确;
    ∵O不一定是AC的中点,
    ∴四边形AECF不一定是平行四边形,
    ∴四边形AFCE不一定是矩形,故D选项错误,
    故选D.

    【点睛】
    本题考查三角形外角性质,角平分线的定义,以及平行线的性质.
    7、B
    【解析】
    分析:直接利用轴对称图形的性质进而分析得出答案.
    详解:如图所示:将这两个三角形的一组等边重合,拼合成一个无重叠的几何图形,其中轴对称图形有4个.

    故选B.
    点睛:本题主要考查了全等三角形的性质和轴对称图形,正确把握轴对称图形的性质是解题的关键.
    8、B
    【解析】
    直接用绝对值的意义求解.
    【详解】
    −的绝对值是.
    故选B.
    【点睛】
    此题是绝对值题,掌握绝对值的意义是解本题的关键.
    9、C
    【解析】
    试题分析:∵DC∥AB,∴∠DCA=∠CAB=65°.
    ∵△ABC绕点A旋转到△AED的位置,∴∠BAE=∠CAD,AC=AD.
    ∴∠ADC=∠DCA="65°." ∴∠CAD=180°﹣∠ADC﹣∠DCA="50°." ∴∠BAE=50°.
    故选C.
    考点:1.面动旋转问题; 2. 平行线的性质;3.旋转的性质;4.等腰三角形的性质.
    10、D
    【解析】
    由抛物线的开口向下知a<0,
    与y轴的交点为在y轴的正半轴上,得c>0,
    对称轴为x= <1,∵a<0,∴2a+b<0,
    而抛物线与x轴有两个交点,∴ −4ac>0,
    当x=2时,y=4a+2b+c<0,当x=1时,a+b+c=2.
    ∵ >2,∴4ac−<8a,∴+8a>4ac,
    ∵①a+b+c=2,则2a+2b+2c=4,②4a+2b+c<0,③a−b+c<0.
    由①,③得到2a+2c<2,由①,②得到2a−c<−4,4a−2c<−8,
    上面两个相加得到6a<−6,∴a<−1.故选D.
    点睛:本题考查了二次函数图象与系数的关系,二次函数 中,a的符号由抛物线的开口方向决定;c的符号由抛物线与y轴交点的位置决定;b的符号由对称轴位置与a的符号决定;抛物线与x轴的交点个数决定根的判别式的符号,注意二次函数图象上特殊点的特点.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、
    【解析】
    ∵投掷这个正六面体一次,向上的一面有6种情况,向上一面的数字是2的倍数或3的倍数的有2、3、4、6共4种情况,
    ∴其概率是=.
    【点睛】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.
    12、4(m+2n)(m﹣2n).
    【解析】
    原式提取4后,利用平方差公式分解即可.
    【详解】
    解:原式=4( ).
    故答案为
    【点睛】
    本题考查提公因式法与公式法的综合运用,解题的关键是熟练掌握因式分解的方法.
    13、x≥1
    【解析】
    把y=2代入y=x+1,得x=1,
    ∴点P的坐标为(1,2),
    根据图象可以知道当x≥1时,y=x+1的函数值不小于y=mx+n相应的函数值,
    因而不等式x+1≥mx+n的解集是:x≥1,
    故答案为x≥1.
    【点睛】
    本题考查了一次函数与不等式(组)的关系及数形结合思想的应用.解决此类问题关键是仔细观察图形,注意几个关键点(交点、原点等),做到数形结合.
    14、y-
    【解析】
    分析:根据换元法,可得答案.
    详解:﹣=1时,如果设=y,那么原方程化成以y为“元”的方程是y﹣=1.
    故答案为y﹣=1.
    点睛:本题考查了换元法解分式方程,把换元为y是解题的关键.
    15、
    【解析】
    如图,连接EF,

    ∵点E、点F是AD、DC的中点,
    ∴AE=ED,CF=DF=CD=AB=1,
    由折叠的性质可得AE=A′E,
    ∴A′E=DE,
    在Rt△EA′F和Rt△EDF中,

    ∴Rt△EA′F≌Rt△EDF(HL),
    ∴A′F=DF=1,
    ∴BF=BA′+A′F=AB+DF=2+1=3,
    在Rt△BCF中,
    BC=.
    ∴AD=BC=2 .
    点睛:本题考查了翻折变换的知识,解答本题的关键是连接EF,证明Rt△EA′F≌Rt△EDF,得出BF的长,再利用勾股定理解答即可.
    16、x=0或x=1.
    【解析】
    利用因式分解法求解可得.
    【详解】
    ∵(x﹣1)﹣(x+1)(x﹣1)=0,
    ∴(x﹣1)(1﹣x﹣1)=0,即﹣x(x﹣1)=0,
    则x=0或x=1,
    故答案为:x=0或x=1.
    【点睛】
    本题主要考查了解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.

    三、解答题(共8题,共72分)
    17、(1)见解析;(2)16
    【解析】
    试题分析:(1)要证△ABF∽△CEB,需找出两组对应角相等;已知了平行四边形的对角相等,再利用AB∥CD,可得一对内错角相等,则可证.
    (2)由于△DEF∽△EBC,可根据两三角形的相似比,求出△EBC的面积,也就求出了四边形BCDF的面积.同理可根据△DEF∽△AFB,求出△AFB的面积.由此可求出▱ABCD的面积.
    试题解析:(1)证明:∵四边形ABCD是平行四边形
    ∴∠A=∠C,AB∥CD
    ∴∠ABF=∠CEB
    ∴△ABF∽△CEB
    (2)解:∵四边形ABCD是平行四边形
    ∴AD∥BC,AB平行且等于CD
    ∴△DEF∽△CEB,△DEF∽△ABF
    ∵DE=CD
    ∴,

    ∵S△DEF=2
    S△CEB=18,S△ABF=8,
    ∴S四边形BCDF=S△BCE-S△DEF=16
    ∴S四边形ABCD=S四边形BCDF+S△ABF=16+8=1.
    考点:1.相似三角形的判定与性质;2.三角形的面积;3.平行四边形的性质.
    18、(1)见解析 (2)8(3)
    【解析】
    分析:(1)连接BD、OD,由AB=BC及∠ADB=90°知AD=CD,根据AO=OB知OD是△ABC的中位线,据此知OD∥BC,结合DE⊥BC即可得证;
    (2)设⊙O的半径为x,则OB=OD=x,在Rt△ODE中由sinE=求得x的值,再根据S阴影=S△ODE-S扇形ODB计算可得答案.
    (3)先证Rt△DFB∽Rt△DCB得,据此求得BF的长,再证△EFB∽△EDO得,据此求得EB的长,继而由勾股定理可得答案.
    详解:(1)如图,连接BD、OD,

    ∵AB是⊙O的直径,
    ∴∠BDA=90°,
    ∵BA=BC,
    ∴AD=CD,
    又∵AO=OB,
    ∴OD∥BC,
    ∵DE⊥BC,
    ∴OD⊥DE,
    ∴DE是⊙O的切线;
    (2)设⊙O的半径为x,则OB=OD=x,
    在Rt△ODE中,OE=4+x,∠E=30°,
    ∴,
    解得:x=4,
    ∴DE=4,S△ODE=×4×4=8,
    S扇形ODB=,
    则S阴影=S△ODE-S扇形ODB=8-;
    (3)在Rt△ABD中,BD=ABsinA=10×=2,
    ∵DE⊥BC,
    ∴Rt△DFB∽Rt△DCB,
    ∴,即,
    ∴BF=2,
    ∵OD∥BC,
    ∴△EFB∽△EDO,
    ∴,即,
    ∴EB=,
    ∴EF=.
    点睛:本题主要考查圆的综合问题,解题的关键是掌握圆的有关性质、中位线定理、三角函数的应用及相似三角形的判定与性质等知识点.
    19、17.3米.
    【解析】
    分析:过点C作于D,根据,得到 ,在中,解三角形即可得到河的宽度.
    详解:过点C作于D,



    ∴米,
    在中,



    ∴米,
    ∴米.
    答:这条河的宽是米.
    点睛:考查解直角三角形的应用,作出辅助线,构造直角三角形是解题的关键.
    20、(1)p=0.1x+3.8;(2)该品牌手机在去年七月份的销售金额最大,最大为10125万元;(3)m的值为1.
    【解析】
    (1)直接利用待定系数法求一次函数解析式即可;
    (2)利用销量×售价=销售金额,进而利用二次函数最值求法求出即可;
    (3)分别表示出1,2月份的销量以及售价,进而利用今年2月份这种品牌手机的销售额为6400万元,得出等式求出即可.
    【详解】
    (1)设p=kx+b,
    把p=3.9,x=1;p=4.0,x=2分别代入p=kx+b中,
    得:
    解得:,
    ∴p=0.1x+3.8;
    (2)设该品牌手机在去年第x个月的销售金额为w万元,
    w=(﹣50x+2600)(0.1x+3.8)
    =﹣5x2+70x+9880
    =﹣5(x﹣7)2+10125,
    当x=7时,w最大=10125,
    答:该品牌手机在去年七月份的销售金额最大,最大为10125万元;
    (3)当x=12时,y=100,p=5,
    1月份的售价为:100(1﹣m%)元,则2月份的售价为:0.8×100(1﹣m%)元;
    1月份的销量为:5×(1﹣1.5m%)万台,则2月份的销量为:[5×(1﹣1.5m%)+1.5]万台;
    ∴0.8×100(1﹣m%)×[5×(1﹣1.5m%)+1.5]=6400,
    解得:m1%=(舍去),m2%=,
    ∴m=1,
    答:m的值为1.
    【点睛】
    此题主要考查了二次函数的应用以及待定系数法求一次函数解析式,根据题意表示出2月份的销量与售价是解题关键.
    21、(1)a=3,b=-2;(2) m≥8或m≤-2
    【解析】
    (1)把A点坐标代入反比例解析式确定出a的值,确定出A坐标,代入一次函数解析式求出b的值;(2)分别求出直线l1与x轴交于点D,再求出直线l2与x轴交于点B,从而得出直线l2与直线l1交于点C坐标,分两种情况进行讨论:①当S△ABC=S△BCD+S△ABD=6时,利用三角形的面积求出m的值,②当S△ABC=S△BCD−S△ABD=6时,利用三角形的面积求出m的值,从而得出m的取值范围.
    【详解】
    (1)∵点A在图象上

    ∴a=3
    ∴A(3,1)
    ∵点A在y=x+b图象上
    ∴1=3+b
    ∴b=-2
    ∴解析式y=x-2
    (2)设直线y=x-2与x轴的交点为D
    ∴D(2,0)
    ①当点C在点A的上方如图(1)

    ∵直线y=-x+m与x轴交点为B
    ∴B(m,0)(m>3)
    ∵直线y=-x+m与直线y=x-2相交于点C

    解得:
    ∴C
    ∵S△ABC=S△BCD-S△ABD≥6

    ∴m≥8
    ②若点C在点A下方如图2

    ∵S△ABC=S△BCD+S△ABD≥6

    ∴m≤-2
    综上所述,m≥8或m≤-2
    【点睛】
    此题考查了一次函数与反比例函数的交点问题,三角形的面积,利用了数形结合的思想,熟练掌握待定系数法是解本题的关键.
    22、(2)y=x2﹣4x+3;(2)①2<x3<4,②m的值为或2.
    【解析】
    (2)由直线y=﹣x+3分别与x轴、y交于点B、C求得点B、C的坐标,再代入y=x2+bx+c求得b、c的值,即可求得抛物线的解析式;(2)①先求得抛物线的顶点坐标为D(2,﹣2),当直线l2经过点D时求得m=﹣2;当直线l2经过点C时求得m=3,再由x2>x2>2,可得﹣2<y3<3,即可﹣2<﹣x3+3<3,所以2<x3<4;②分当直线l2在x轴的下方时,点Q在点P、N之间和当直线l2在x轴的上方时,点N在点P、Q之间两种情况求m的值即可.
    【详解】
    (2)在y=﹣x+3中,令x=2,则y=3;
    令y=2,则x=3;得B(3,2),C(2,3),
    将点B(3,2),C(2,3)的坐标代入y=x2+bx+c
    得:,解得
    ∴y=x2﹣4x+3;
    (2)∵直线l2平行于x轴,
    ∴y2=y2=y3=m,
    ①如图①,y=x2﹣4x+3=(x﹣2)2﹣2,
    ∴顶点为D(2,﹣2),
    当直线l2经过点D时,m=﹣2;
    当直线l2经过点C时,m=3
    ∵x2>x2>2,
    ∴﹣2<y3<3,
    即﹣2<﹣x3+3<3,
    得2<x3<4,
    ②如图①,当直线l2在x轴的下方时,点Q在点P、N之间,
    若三个点P、Q、N中恰好有一点是其他两点所连线段的中点,则得PQ=QN.
    ∵x2>x2>2,
    ∴x3﹣x2=x2﹣x2,
    即 x3=2x2﹣x2,
    ∵l2∥x轴,即PQ∥x轴,
    ∴点P、Q关于抛物线的对称轴l2对称,
    又抛物线的对称轴l2为x=2,
    ∴2﹣x2=x2﹣2,
    即x2=4﹣x2,
    ∴x3=3x2﹣4,
    将点Q(x2,y2)的坐标代入y=x2﹣4x+3
    得y2=x22﹣4x2+3,又y2=y3=﹣x3+3
    ∴x22﹣4x2+3=﹣x3+3,
    ∴x22﹣4x2=﹣(3x2﹣4)
    即 x22﹣x2﹣4=2,解得x2=,(负值已舍去),
    ∴m=()2﹣4×+3=
    如图②,当直线l2在x轴的上方时,点N在点P、Q之间,

    若三个点P、Q、N中恰好有一点是其他两点所连线段的中点,则得PN=NQ.
    由上可得点P、Q关于直线l2对称,
    ∴点N在抛物线的对称轴l2:x=2,
    又点N在直线y=﹣x+3上,
    ∴y3=﹣2+3=2,即m=2.
    故m的值为或2.
    【点睛】
    本题是二次函数综合题,
    本题为二次函数的综合应用,涉及待定系数法、函数图象的交点、线段的中点及分类讨论思想等知识.在(2)中注意待定系数法的应用;在(2)①注意利用数形结合思想;在(2)②注意分情况讨论.本题考查知识点较多,综合性较强,难度较大.
    23、(1)购进 A 种树苗的单价为 200 元/棵,购进 B 种树苗的单价为 300 元/棵(2)A 种 树苗至少需购进 1 棵
    【解析】
    (1)设购进A种树苗的单价为x元/棵,购进B种树苗的单价为y元/棵,根据“若购进A种树苗3棵,B种树苗5棵,需210元,若购进A种树苗4棵,B种树苗1棵,需3800元”,即可得出关于x、y的二元一次方程组,解之即可得出结论;
    (2)设需购进A种树苗a棵,则购进B种树苗(30-a)棵,根据总价=单价×购买数量结合购买两种树苗的总费用不多于8000元,即可得出关于a的一元一次不等式,解之取其中的最小值即可得出结论.
    【详解】
    设购进 A 种树苗的单价为 x 元/棵,购进 B 种树苗的单价为 y 元/棵,根据题意得: ,
    解得: .
    答:购进 A 种树苗的单价为 200 元/棵,购进 B 种树苗的单价为 300 元/棵.
    (2)设需购进 A 种树苗 a 棵,则购进 B 种树苗(30﹣a)棵,根据题意得:
    200a+300(30﹣a)≤8000,
    解得:a≥1.
    ∴A种树苗至少需购进 1 棵.
    【点睛】
    本题考查了一元一次不等式的应用以及二元一次方程组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据数量间的关系,正确列出一元一次不等式.
    24、详见解析.
    【解析】
    先证明△ADF≌△CDE,由此可得∠DAF=∠DCE,∠AFD=∠CED,再根据∠EAG=∠FCG,AE=CF,∠AEG=∠CFG可得△AEG≌△CFG,所以AG=CG.
    【详解】
    证明:∵四边形ABCD是正方形,
    ∴AD=DC,
    ∵E、F分别是AB、BC边的中点,
    ∴AE=ED=CF=DF.
    又∠D=∠D,
    ∴△ADF≌△CDE(SAS).
    ∴∠DAF=∠DCE,∠AFD=∠CED.
    ∴∠AEG=∠CFG.
    在△AEG和△CFG中

    ∴△AEG≌△CFG(ASA).
    ∴AG=CG.
    【点睛】
    本题主要考查正方形的性质、全等三角形的判定和性质,关键是要灵活运用全等三角形的判定方法.

    相关试卷

    2023年陕西省西安六中中考数学五模试卷(含解析): 这是一份2023年陕西省西安六中中考数学五模试卷(含解析),共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023年陕西省西安六中中考数学五模试卷(含解析): 这是一份2023年陕西省西安六中中考数学五模试卷(含解析),共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2021年陕西省渭南市华阴市中考数学二模试卷: 这是一份2021年陕西省渭南市华阴市中考数学二模试卷,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map