


2022届陕西省华阴市中考数学模拟试题含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(共10小题,每小题3分,共30分)
1.某共享单车前a公里1元,超过a公里的,每公里2元,若要使使用该共享单车50%的人只花1元钱,a应该要取什么数( )
A.平均数 B.中位数 C.众数 D.方差
2.对于不为零的两个实数a,b,如果规定:a★b=,那么函数y=2★x的图象大致是( )
A. B. C. D.
3.如图,AB是⊙O的弦,半径OC⊥AB 于D,若CD=2,⊙O的半径为5,那么AB的长为( )
A.3 B.4 C.6 D.8
4.小明和小亮按如图所示的规则玩一次“锤子、剪刀、布”游戏,下列说法中正确的是( )
A.小明不是胜就是输,所以小明胜的概率为 B.小明胜的概率是,所以输的概率是
C.两人出相同手势的概率为 D.小明胜的概率和小亮胜的概率一样
5.如图,点F是ABCD的边AD上的三等分点,BF交AC于点E,如果△AEF的面积为2,那么四边形CDFE的面积等于( )
A.18 B.22 C.24 D.46
6.习近平主席在2018年新年贺词中指出,2017年,基本医疗保险已经覆盖1350000000人.将1350000000用科学记数法表示为( )
A.135×107 B.1.35×109 C.13.5×108 D.1.35×1014
7.下列计算正确的是( )
A.(a)=a B.a+a=a
C.(3a)•(2a)=6a D.3a﹣a=3
8.计算的结果是( )
A. B. C. D.2
9.为迎接中考体育加试,小刚和小亮分别统计了自己最近10次跳绳比赛,下列统计量中能用来比较两人成绩稳定程度的是 ( )
A.平均数 B.中位数 C.众数 D.方差
10.如图,A、B、C、D四个点均在⊙O上,∠AOD=70°,AO∥DC,则∠B的度数为( )
A.40° B.45° C.50° D.55°
二、填空题(本大题共6个小题,每小题3分,共18分)
11.分解因式:=____
12.如图,点D是线段AB的中点,点C是线段AD的中点,若CD=1,则AB=________________.
13.若一个棱柱有7个面,则它是______棱柱.
14.现有八个大小相同的矩形,可拼成如图1、2所示的图形,在拼图2时,中间留下了一个边长为2的小正方形,则每个小矩形的面积是_____.
15.如图,点D为矩形OABC的AB边的中点,反比例函数的图象经过点D,交BC边于点E.若△BDE的面积为1,则k =________
16.等腰梯形是__________对称图形.
三、解答题(共8题,共72分)
17.(8分)4月9日上午8时,2017 徐州国际马拉松赛鸣枪开跑,一名岁的男子带着他的两个孩子一同参加了比赛,下面是两个孩子与记者的对话:
根据对话内容,请你用方程的知识帮记者求出哥哥和妹妹的年龄.
18.(8分)某初级中学对毕业班学生三年来参加市级以上各项活动获奖情况进行统计,七年级时有48人次获奖,之后逐年增加,到九年级毕业时累计共有183人次获奖,求这两年中获奖人次的平均年增长率.
19.(8分)如图,在4×4的正方形方格中,△ABC和△DEF的顶点都在边长为1的小正方形的顶点上. 填空:∠ABC= °,BC= ;判断△ABC与△DEF是否相似,并证明你的结论.
20.(8分)先化简,再求值:(x﹣2y)2+(x+y)(x﹣4y),其中x=5,y=.
21.(8分)如图,有6个质地和大小均相同的球,每个球只标有一个数字,将标有3,4,5的三个球放入甲箱中,标有4,5,6的三个球放入乙箱中.
(1)小宇从甲箱中随机模出一个球,求“摸出标有数字是3的球”的概率;
(2)小宇从甲箱中、小静从乙箱中各自随机摸出一个球,若小宇所摸球上的数字比小静所摸球上的数字大1,则称小宇“略胜一筹”.请你用列表法(或画树状图)求小宇“略胜一筹”的概率.
22.(10分)自学下面材料后,解答问题。
分母中含有未知数的不等式叫分式不等式。如: <0等。那么如何求出它们的解集呢?
根据我们学过的有理数除法法则可知:两数相除,同号得正,异号得负。其字母表达式为:
若a>0,b>0,则>0;若a<0,b<0,则>0;
若a>0,b<0,则<0;若a<0,b>0,则<0.
反之:若>0,则 或 ,
(1)若<0,则___或___.
(2)根据上述规律,求不等式 >0的解集.
23.(12分)在“优秀传统文化进校园”活动中,学校计划每周二下午第三节课时间开展此项活动,拟开展活动项目为:剪纸,武术,书法,器乐,要求七年级学生人人参加,并且每人只能参加其中一项活动.教务处在该校七年级学生中随机抽取了100名学生进行调查,并对此进行统计,绘制了如图所示的条形统计图和扇形统计图(均不完整).
请解答下列问题:请补全条形统计图和扇形统计图;在参加“剪纸”活动项目的学生中,男生所占的百分比是多少?若该校七年级学生共有500人,请估计其中参加“书法”项目活动的有多少人?学校教务处要从这些被调查的女生中,随机抽取一人了解具体情况,那么正好抽到参加“器乐”活动项目的女生的概率是多少?
24.如图所示,正方形网格中,△ABC为格点三角形(即三角形的顶点都在格点上).
(1)把△ABC沿BA方向平移后,点A移到点A1,在网格中画出平移后得到的△A1B1C1;
(2)把△A1B1C1绕点A1按逆时针方向旋转90°,在网格中画出旋转后的△A1B2C2;
(3)如果网格中小正方形的边长为1,求点B经过(1)、(2)变换的路径总长.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、B
【解析】解:根据中位数的意义,故只要知道中位数就可以了.故选B.
2、C
【解析】
先根据规定得出函数y=2★x的解析式,再利用一次函数与反比例函数的图象性质即可求解.
【详解】
由题意,可得当2<x,即x>2时,y=2+x,y是x的一次函数,图象是一条射线除去端点,故A、D错误;
当2≥x,即x≤2时,y=﹣,y是x的反比例函数,图象是双曲线,分布在第二、四象限,其中在第四象限时,0<x≤2,故B错误.
故选:C.
【点睛】
本题考查了新定义,函数的图象,一次函数与反比例函数的图象性质,根据新定义得出函数y=2★x的解析式是解题的关键.
3、D
【解析】
连接OA,构建直角三角形AOD;利用垂径定理求得AB=2AD;然后在直角三角形AOD中由勾股定理求得AD的长度,从而求得AB=2AD=1.
【详解】
连接OA.
∵⊙O的半径为5,CD=2,
∵OD=5-2=3,即OD=3;
又∵AB是⊙O的弦,OC⊥AB,
∴AD=AB;
在直角三角形ODC中,根据勾股定理,得
AD==4,
∴AB=1.
故选D.
【点睛】
本题考查了垂径定理、勾股定理.解答该题的关键是通过作辅助线OA构建直角三角形,在直角三角形中利用勾股定理求相关线段的长度.
4、D
【解析】
利用概率公式,一一判断即可解决问题.
【详解】
A、错误.小明还有可能是平;
B、错误、小明胜的概率是 ,所以输的概率是也是;
C、错误.两人出相同手势的概率为;
D、正确.小明胜的概率和小亮胜的概率一样,概率都是;
故选D.
【点睛】
本题考查列表法、树状图等知识.用到的知识点为:概率=所求情况数与总情况数之比.
5、B
【解析】
连接FC,先证明△AEF∽△BEC,得出AE∶EC=1∶3,所以S△EFC=3S△AEF,在根据点F是□ABCD的边AD上的三等分点得出S△FCD=2S△AFC,四边形CDFE的面积=S△FCD+ S△EFC,再代入△AEF的面积为2即可求出四边形CDFE的面积.
【详解】
解:∵AD∥BC,
∴∠EAF=∠ACB,∠AFE=∠FBC;
∵∠AEF=∠BEC,
∴△AEF∽△BEC,
∴==,
∵△AEF与△EFC高相等,
∴S△EFC=3S△AEF,
∵点F是□ABCD的边AD上的三等分点,
∴S△FCD=2S△AFC,
∵△AEF的面积为2,
∴四边形CDFE的面积=S△FCD+ S△EFC=16+6=22.
故选B.
【点睛】
本题考查了相似三角形的应用与三角形的面积,解题的关键是熟练的掌握相似三角形的应用与三角形的面积的相关知识点.
6、B
【解析】
科学记数法的表示形式为a×的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【详解】
将1350000000用科学记数法表示为:1350000000=1.35×109,
故选B.
【点睛】
本题考查科学记数法的表示方法. 科学记数法的表示形式为a×的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值及n的值.
7、A
【解析】
根据同底数幂的乘法的性质,幂的乘方的性质,积的乘方的性质,合并同类项的法则,对各选项分析判断后利用排除法求解.
【详解】
A.(a2)3=a2×3=a6,故本选项正确;
B.a2+a2=2a2,故本选项错误;
C.(3a)•(2a)2=(3a)•(4a2)=12a1+2=12a3,故本选项错误;
D.3a﹣a=2a,故本选项错误.
故选A.
【点睛】
本题考查了合并同类项,同底数幂的乘法,幂的乘方,积的乘方和单项式乘法,理清指数的变化是解题的关键.
8、C
【解析】
化简二次根式,并进行二次根式的乘法运算,最后合并同类二次根式即可.
【详解】
原式=3﹣2·=3﹣=.
故选C.
【点睛】
本题主要考查二次根式的化简以及二次根式的混合运算.
9、D
【解析】
根据方差反映数据的波动情况即可解答.
【详解】
由于方差反映数据的波动情况,所以比较两人成绩稳定程度的数据是方差.
故选D.
【点睛】
本题主要考查了统计的有关知识,主要包括平均数、中位数、众数、方差.反映数据集中程度的统计量有平均数、中位数、众数、方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.
10、D
【解析】
试题分析:如图,
连接OC,
∵AO∥DC,
∴∠ODC=∠AOD=70°,
∵OD=OC,
∴∠ODC=∠OCD=70°,
∴∠COD=40°,
∴∠AOC=110°,
∴∠B=∠AOC=55°.
故选D.
考点:1、平行线的性质;2、圆周角定理;3等腰三角形的性质
二、填空题(本大题共6个小题,每小题3分,共18分)
11、x(y+2)(y-2)
【解析】
原式提取x,再利用平方差公式分解即可.
【详解】
原式=x(y2-4)=x(y+2)(y-2),
故答案为x(y+2)(y-2).
【点睛】
此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.
12、4
【解析】
∵点C是线段AD的中点,若CD=1,
∴AD=1×2=2,
∵点D是线段AB的中点,
∴AB=2×2=4,
故答案为4.
13、5
【解析】
分析:根据n棱柱的特点,由n个侧面和两个底面构成,可判断.
详解:由题意可知:7-2=5.
故答案为5.
点睛:此题主要考查了棱柱的概念,根据棱柱的底面和侧面的关系求解是解题关键.
14、1.
【解析】
设小矩形的长为x,宽为y,则由图1可得5y=3x;由图2可知2y-x=2.
【详解】
解:设小矩形的长为x,宽为y,则可列出方程组,
,解得,
则小矩形的面积为6×10=1.
【点睛】
本题考查了二元一次方程组的应用.
15、1
【解析】
分析:设D(a,),利用点D为矩形OABC的AB边的中点得到B(2a,),则E(2a,),然后利用三角形面积公式得到•a•(-)=1,最后解方程即可.
详解:设D(a,),
∵点D为矩形OABC的AB边的中点,
∴B(2a,),
∴E(2a,),
∵△BDE的面积为1,
∴•a•(-)=1,解得k=1.
故答案为1.
点睛:本题考查了反比例函数解析式的应用,根据解析式设出点的坐标,结合矩形的性质并利用平面直角坐标系中点的特征确定三角形的两边长,进而结合三角形的面积公式列出方程求解,可确定参数k的取值.
16、轴
【解析】
根据轴对称图形的概念,等腰梯形是轴对称图形,且有1条对称轴,即底边的垂直平分线.
【详解】
画图如下:
结合图形,根据轴对称的定义及等腰梯形的特征可知,
等腰梯形是轴对称图形.
故答案为:轴
【点睛】
本题考查了关于轴对称的定义,运用定义会进行判断一个图形是不是轴对称图形.
三、解答题(共8题,共72分)
17、今年妹妹6岁,哥哥10岁.
【解析】
试题分析:设今年妹妹的年龄为x岁,哥哥的年龄为y岁,根据两个孩子的对话,即可得出关于x、y的二元一次方程组,解之即可得出结论.
试题解析:设今年妹妹的年龄为x岁,哥哥的年龄为y岁,
根据题意得:
解得: .
答:今年妹妹6岁,哥哥10岁.
考点:二元一次方程组的应用.
18、25%
【解析】
首先设这两年中获奖人次的平均年增长率为x,则可得八年级的获奖人数为48(1+x),九年级的获奖人数为48(1+x)2;故根据题意可得48(1+x)2=183,即可求得x的值,即可求解本题.
【详解】
设这两年中获奖人次的平均年增长率为x,
根据题意得:48+48(1+x)+48(1+x)2=183,
解得:x1==25%,x2=﹣(不符合题意,舍去).
答:这两年中获奖人次的年平均年增长率为25%
19、 (1) (2)△ABC∽△DEF.
【解析】
(1)根据已知条件,结合网格可以求出∠ABC的度数,根据,△ABC和△DEF的顶点都在边长为1的小正方形的顶点上,利用勾股定理即可求出线段BC的长;
(2)根据相似三角形的判定定理,夹角相等,对应边成比例即可证明△ABC与△DEF相似.
【详解】
(1)
故答案为
(2)△ABC∽△DEF.
证明:∵在4×4的正方形方格中,
∴∠ABC=∠DEF.
∵
∴
∴△ABC∽△DEF.
【点睛】
考查勾股定理以及相似三角形的判定,熟练掌握相似三角形的判定方法是解题的关键.
20、2x2﹣7xy,1
【解析】
根据完全平方公式及多项式的乘法法则展开,然后合并同类项进行化简,然后把x、y的值代入求值即可.
【详解】
原式=x2﹣4xy+4y2+x2﹣4xy+xy﹣4y2=2x2﹣7xy,
当x=5,y=时,原式=50﹣7=1.
【点睛】
完全平方公式和多项式的乘法法则是本题的考点,能够正确化简多项式是解题的关键.
21、(1);(2)P(小宇“略胜一筹”)=.
【解析】
分析:
(1)由题意可知,小宇从甲箱中任意摸出一个球,共有3种等可能结果出现,其中结果为3的只有1种,由此可得小宇从甲箱中任取一个球,刚好摸到“标有数字3”的概率为;
(2)根据题意通过列表的方式列举出小宇和小静摸球的所有等可能结果,然后根据表中结果进行解答即可.
详解:
(1)P(摸出标有数字是3的球)=.
(2)小宇和小静摸球的所有结果如下表所示:
小静 小宇 | 4 | 5 | 6 |
3 | (3,4) | (3,5) | (3,6) |
4 | (4,4) | (4,5) | (4,6) |
5 | (5,4) | (5,5) | (5,6) |
从上表可知,一共有九种可能,其中小宇所摸球的数字比小静的大1的有一种,因此
P(小宇“略胜一筹”)=.
点睛:能正确通过列表的方式列举出小宇在甲箱中任摸一个球和小静在乙箱中任摸一个球的所有等可能结果,是正确解答本题第2小题的关键.
22、(1) 或;(2)x>2或x<−1.
【解析】
(1)根据两数相除,异号得负解答;
(2)先根据同号得正把不等式转化成不等式组,然后根据一元一次不等式组的解法求解即可.
【详解】
(1)若>0,则 或 ;
故答案为: 或;
(2)由上述规律可知,不等式转化为或,
所以,x>2或x<−1.
【点睛】
此题考查一元一次不等式组的应用,解题关键在于掌握掌握运算法则.
23、(1)详见解析;(2)40%;(3)105;(4).
【解析】
(1)先求出参加活动的女生人数,进而求出参加武术的女生人数,即可补全条形统计图,再分别求出参加武术的人数和参加器乐的人数,即可求出百分比;
(2)用参加剪纸中男生人数除以剪纸的总人数即可得出结论;
(3)根据样本估计总体的方法计算即可;
(4)利用概率公式即可得出结论.
【详解】
(1)由条形图知,男生共有:10+20+13+9=52人,
∴女生人数为100-52=48人,
∴参加武术的女生为48-15-8-15=10人,
∴参加武术的人数为20+10=30人,
∴30÷100=30%,
参加器乐的人数为9+15=24人,
∴24÷100=24%,
补全条形统计图和扇形统计图如图所示:
(2)在参加“剪纸”活动项目的学生中,男生所占的百分比是100%=40%.
答:在参加“剪纸”活动项目的学生中,男生所占的百分比为40%.
(3)500×21%=105(人).
答:估计其中参加“书法”项目活动的有105人.
(4).
答:正好抽到参加“器乐”活动项目的女生的概率为.
【点睛】
此题主要考查了条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
24、(1)(2)作图见解析;(3).
【解析】
(1)利用平移的性质画图,即对应点都移动相同的距离.
(2)利用旋转的性质画图,对应点都旋转相同的角度.
(3)利用勾股定理和弧长公式求点B经过(1)、(2)变换的路径总长.
【详解】
解:(1)如答图,连接AA1,然后从C点作AA1的平行线且A1C1=AC,同理找到点B1,分别连接三点,△A1B1C1即为所求.
(2)如答图,分别将A1B1,A1C1绕点A1按逆时针方向旋转90°,得到B2,C2,连接B2C2,△A1B2C2即为所求.
(3)∵,
∴点B所走的路径总长=.
考点:1.网格问题;2.作图(平移和旋转变换);3.勾股定理;4.弧长的计算.
陕西省咸阳百灵中学2022年中考数学模拟试题含解析: 这是一份陕西省咸阳百灵中学2022年中考数学模拟试题含解析,共22页。试卷主要包含了计算﹣8+3的结果是,下列实数中是无理数的是等内容,欢迎下载使用。
陕西省华阴市2022年中考数学五模试卷含解析: 这是一份陕西省华阴市2022年中考数学五模试卷含解析,共23页。试卷主要包含了- 的绝对值是等内容,欢迎下载使用。
陕西省岐山县2021-2022学年中考数学模拟试题含解析: 这是一份陕西省岐山县2021-2022学年中考数学模拟试题含解析,共25页。试卷主要包含了考生必须保证答题卡的整洁,下列二次根式,最简二次根式是等内容,欢迎下载使用。