|试卷下载
搜索
    上传资料 赚现金
    山东省日照市新营中学2022年中考二模数学试题含解析
    立即下载
    加入资料篮
    山东省日照市新营中学2022年中考二模数学试题含解析01
    山东省日照市新营中学2022年中考二模数学试题含解析02
    山东省日照市新营中学2022年中考二模数学试题含解析03
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    山东省日照市新营中学2022年中考二模数学试题含解析

    展开
    这是一份山东省日照市新营中学2022年中考二模数学试题含解析,共22页。试卷主要包含了考生必须保证答题卡的整洁,若,则的值为,计算﹣2+3的结果是等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    考生请注意:
    1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
    2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
    3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。

    一、选择题(共10小题,每小题3分,共30分)
    1.方程x2﹣3x=0的根是( )
    A.x=0 B.x=3 C., D.,
    2.将下列各选项中的平面图形绕轴旋转一周,可得到如图所示的立体图形的是(  )

    A. B. C. D.
    3.图1和图2中所有的正方形都全等,将图1的正方形放在图2中的①②③④某一位置,所组成的图形不能围成正方体的位置是(  )

    A.① B.② C.③ D.④
    4.如图,一束平行太阳光线FA、GB照射到正五边形ABCDE上,∠ABG=46°,则∠FAE的度数是(  )

    A.26°. B.44°. C.46°. D.72°
    5.若,则的值为( )
    A.12 B.2 C.3 D.0
    6.如图,直线AB∥CD,则下列结论正确的是(  )

    A.∠1=∠2 B.∠3=∠4 C.∠1+∠3=180° D.∠3+∠4=180°
    7.(2017•鄂州)如图四边形ABCD中,AD∥BC,∠BCD=90°,AB=BC+AD,∠DAC=45°,E为CD上一点,且∠BAE=45°.若CD=4,则△ABE的面积为( )

    A. B. C. D.
    8.二次函数y=ax2+bx+c(a≠0)的图象如图,则反比例函数y=与一次函数y=bx﹣c在同一坐标系内的图象大致是(   )

    A. B. C. D.
    9.下列各组单项式中,不是同类项的一组是( )
    A.和 B.和 C.和 D.和3
    10.计算﹣2+3的结果是(  )
    A.1 B.﹣1 C.﹣5 D.﹣6
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.若正六边形的边长为2,则此正六边形的边心距为______.
    12.如图,直线l⊥x轴于点P,且与反比例函数y1=(x>0)及y2=(x>0)的图象分别交于点A,B,连接OA,OB,已知△OAB的面积为2,则k1-k2=________.

    13.图1、图2的位置如图所示,如果将两图进行拼接(无覆盖),可以得到一个矩形,请利用学过的变换(翻折、旋转、轴对称)知识,将图2进行移动,写出一种拼接成矩形的过程______.

    14.袋中装有红、绿各一个小球,随机摸出1个小球后放回,再随机摸出一个,则第一次摸到红球,第二次摸到绿球的概率是_____.
    15.已知A、B两地之间的距离为20千米,甲步行,乙骑车,两人沿着相同路线,由A地到B地匀速前行,甲、乙行进的路程s与x(小时)的函数图象如图所示.(1)乙比甲晚出发___小时;(2)在整个运动过程中,甲、乙两人之间的距离随x的增大而增大时,x的取值范围是___.

    16.如图,四边形ABCD内接于⊙O,AD、BC的延长线相交于点E,AB、DC的延长线相交于点F.若∠E+∠F=80°,则∠A=____°.

    三、解答题(共8题,共72分)
    17.(8分)我国古代数学著作《增删算法统宗》记载“绳索量竿”问题:“一条竿子一条索,索比竿子长一托,折回索子却量竿,却比竿子短一托”其大意为:现有一根竿和一根绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.求绳索长和竿长.
    18.(8分)已知:如图,一次函数与反比例函数的图象有两个交点和,过点作轴,垂足为点;过点作轴,垂足为点,且,连接.
    求,,的值;求四边形的面积.
    19.(8分)如图,某人在山坡坡脚C处测得一座建筑物顶点A的仰角为63.4°,沿山坡向上走到P处再测得该建筑物顶点A的仰角为53°.已知BC=90米,且B、C、D在同一条直线上,山坡坡度i=5:1.
    (1)求此人所在位置点P的铅直高度.(结果精确到0.1米)
    (2)求此人从所在位置点P走到建筑物底部B点的路程(结果精确到0.1米)(测倾器的高度忽略不计,参考数据:tan53°≈,tan63.4°≈2)

    20.(8分)定义:若某抛物线上有两点A、B关于原点对称,则称该抛物线为“完美抛物线”.已知二次函数y=ax2-2mx+c(a,m,c均为常数且ac≠0)是“完美抛物线”:
    (1)试判断ac的符号;
    (2)若c=-1,该二次函数图象与y轴交于点C,且S△ABC=1.
    ①求a的值;
    ②当该二次函数图象与端点为M(-1,1)、N(3,4)的线段有且只有一个交点时,求m的取值范围.
    21.(8分)已知在梯形ABCD中,AD∥BC,AB=BC,DC⊥BC,且AD=1,DC=3,点P为边AB上一动点,以P为圆心,BP为半径的圆交边BC于点Q.
    (1)求AB的长;
    (2)当BQ的长为时,请通过计算说明圆P与直线DC的位置关系.

    22.(10分)如图,在平面直角坐标系中,矩形DOBC的顶点O与坐标原点重合,B、D分别在坐标轴上,点C的坐标为(6,4),反比例函数y=(x>0)的图象经过线段OC的中点A,交DC于点E,交BC于点F.
    (1)求反比例函数的解析式;
    (2)求△OEF的面积;
    (3)设直线EF的解析式为y=k2x+b,请结合图象直接写出不等式k2x+b>的解集.

    23.(12分)如图,在直角坐标系中,矩形OABC的顶点O与坐标原点重合,A、C分别在坐标轴上,点B的坐标为(4,2),直线交AB,BC分别于点M,N,反比例函数的图象经过点M,N.

    (1)求反比例函数的解析式;
    (2)若点P在y轴上,且△OPM的面积与四边形BMON的面积相等,求点P的坐标.
    24. 如图,已知正方形ABCD,E是AB延长线上一点,F是DC延长线上一点,且满足BF=EF,将线段EF绕点F顺时针旋转90°得FG,过点B作FG的平行线,交DA的延长线于点N,连接NG.求证:BE=2CF;试猜想四边形BFGN是什么特殊的四边形,并对你的猜想加以证明.




    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、D
    【解析】
    先将方程左边提公因式x,解方程即可得答案.
    【详解】
    x2﹣3x=0,
    x(x﹣3)=0,
    x1=0,x2=3,
    故选:D.
    【点睛】
    本题考查解一元二次方程,解一元二次方程的常用方法有:配方法、直接开平方法、公式法、因式分解法等,熟练掌握并灵活运用适当的方法是解题关键.
    2、A
    【解析】
    分析:面动成体.由题目中的图示可知:此圆台是直角梯形转成圆台的条件是:绕垂直于底的腰旋转.
    详解:A、上面小下面大,侧面是曲面,故本选项正确;
    B、上面大下面小,侧面是曲面,故本选项错误;
    C、是一个圆台,故本选项错误;
    D、下面小上面大侧面是曲面,故本选项错误;
    故选A.
    点睛:本题考查直角梯形转成圆台的条件:应绕垂直于底的腰旋转.
    3、A
    【解析】
    由平面图形的折叠及正方体的表面展开图的特点解题.
    【详解】
    将图1的正方形放在图2中的①的位置出现重叠的面,所以不能围成正方体,
    故选A.
    【点睛】
    本题考查了展开图折叠成几何体,解题时勿忘记四棱柱的特征及正方体展开图的各种情形.注意:只要有“田”字格的展开图都不是正方体的表面展开图.
    4、A
    【解析】
    先根据正五边形的性质求出∠EAB的度数,再由平行线的性质即可得出结论.
    【详解】
    解:∵图中是正五边形.
    ∴∠EAB=108°.
    ∵太阳光线互相平行,∠ABG=46°,
    ∴∠FAE=180°﹣∠ABG﹣∠EAB=180°﹣46°﹣108°=26°.
    故选A.
    【点睛】
    此题考查平行线的性质,多边形内角与外角,解题关键在于求出∠EAB.
    5、A
    【解析】
    先根据得出,然后利用提公因式法和完全平方公式对进行变形,然后整体代入即可求值.
    【详解】
    ∵,
    ∴,
    ∴.
    故选:A.
    【点睛】
    本题主要考查整体代入法求代数式的值,掌握完全平方公式和整体代入法是解题的关键.
    6、D
    【解析】
    分析:依据AB∥CD,可得∠3+∠5=180°,再根据∠5=∠4,即可得出∠3+∠4=180°.
    详解:如图,∵AB∥CD,
    ∴∠3+∠5=180°,
    又∵∠5=∠4,
    ∴∠3+∠4=180°,
    故选D.

    点睛:本题考查了平行线的性质,解题时注意:两直线平行,同旁内角互补.
    7、D
    【解析】解:如图取CD的中点F,连接BF延长BF交AD的延长线于G,作FH⊥AB于H,EK⊥AB于K.作BT⊥AD于T.∵BC∥AG,∴∠BCF=∠FDG,∵∠BFC=∠DFG,FC=DF,∴△BCF≌△GDF,∴BC=DG,BF=FG,∵AB=BC+AD,AG=AD+DG=AD+BC,∴AB=AG,∵BF=FG,∴BF⊥BG,∠ABF=∠G=∠CBF,∵FH⊥BA,FC⊥BC,∴FH=FC,易证△FBC≌△FBH,△FAH≌△FAD,∴BC=BH,AD=AB,由题意AD=DC=4,设BC=TD=BH=x,在Rt△ABT中,∵AB2=BT2+AT2,∴(x+4)2=42+(4﹣x)2,∴x=1,∴BC=BH=TD=1,AB=5,设AK=EK=y,DE=z,∵AE2=AK2+EK2=AD2+DE2,BE2=BK2+KE2=BC2+EC2,∴42+z2=y2①,(5﹣y)2+y2=12+(4﹣z)2②,由①②可得y=,∴S△ABE=×5×=,故选D.

    点睛:本题考查直角梯形的性质、全等三角形的判定和性质、角平分线的性质定理、勾股定理、二元二次方程组等知识,解题的关键是学会添加常用辅助线,学会利用参数,构建方程解决问题,属于中考压轴题.
    8、C
    【解析】
    根据二次函数的图象找出a、b、c的正负,再结合反比例函数、一次函数系数与图象的关系即可得出结论.
    【详解】
    解:观察二次函数图象可知:
    开口向上,a>1;对称轴大于1,>1,b<1;二次函数图象与y轴交点在y轴的正半轴,c>1.
    ∵反比例函数中k=﹣a<1,
    ∴反比例函数图象在第二、四象限内;
    ∵一次函数y=bx﹣c中,b<1,﹣c<1,
    ∴一次函数图象经过第二、三、四象限.
    故选C.
    【点睛】
    本题考查了二次函数的图象、反比例函数的图象以及一次函数的图象,解题的关键是根据二次函数的图象找出a、b、c的正负.本题属于基础题,难度不大,解决该题型题目时,根据二次函数图象找出a、b、c的正负,再结合反比例函数、一次函数系数与图象的关系即可得出结论.
    9、A
    【解析】
    如果两个单项式,它们所含的字母相同,并且相同字母的指数也分别相同,那么就称这两个单项式为同类项.
    【详解】
    根据题意可知:x2y和2xy2不是同类项.
    故答案选:A.
    【点睛】
    本题考查了单项式与多项式,解题的关键是熟练的掌握单项式与多项式的相关知识点.
    10、A
    【解析】
    根据异号两数相加的法则进行计算即可.
    【详解】
    解:因为-2,3异号,且|-2|<|3|,所以-2+3=1.
    故选A.
    【点睛】
    本题主要考查了异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、.
    【解析】
    连接OA、OB,根据正六边形的性质求出∠AOB,得出等边三角形OAB,求出OA、AM的长,根据勾股定理求出即可.
    【详解】
    连接OA、OB、OC、OD、OE、OF,

    ∵正六边形ABCDEF,
    ∴∠AOB=∠BOC=∠COD=∠DOE=∠EOF=∠AOF,∴∠AOB=60°,OA=OB,
    ∴△AOB是等边三角形,
    ∴OA=OB=AB=2,∵AB⊥OM,∴AM=BM=1,
    在△OAM中,由勾股定理得:OM=.
    12、2
    【解析】
    试题分析:∵反比例函数(x>1)及(x>1)的图象均在第一象限内,
    ∴>1,>1.
    ∵AP⊥x轴,∴S△OAP=,S△OBP=,
    ∴S△OAB=S△OAP﹣S△OBP==2,
    解得:=2.
    故答案为2.
    13、先将图2以点A为旋转中心逆时针旋转,再将旋转后的图形向左平移5个单位.
    【解析】
    变换图形2,可先旋转,然后平移与图2拼成一个矩形.
    【详解】
    先将图2以点A为旋转中心逆时针旋转90°,再将旋转后的图形向左平移5个单位可以与图1拼成一个矩形.
    故答案为:先将图2以点A为旋转中心逆时针旋转90°,再将旋转后的图形向左平移5个单位.
    【点睛】
    本题考查了平移和旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.
    14、
    【解析】
    解:列表如下:

    所有等可能的情况有4种,所以第一次摸到红球,第二次摸到绿球的概率=.故答案为.
    15、2, 0≤x≤2或≤x≤2.
    【解析】
    (2)由图象直接可得答案;
    (2)根据图象求出甲乙的函数解析式,再求出方程组的解集即可解答
    【详解】
    (2)由 函数图象可知,乙比甲晚出发2小时.
    故答案为2.
    (2)在整个运动过程中,甲、乙两人之间的距离随x的增大而增大时,有两种情况:
    一是甲出发,乙还未出发时:此时0≤x≤2;
    二是乙追上甲后,直至乙到达终点时:
    设甲的函数解析式为:y=kx,由图象可知,(4,20)在函数图象上,代入得:20=4k,
    ∴k=5,
    ∴甲的函数解析式为:y=5x①
    设乙的函数解析式为:y=k′x+b,将坐标(2,0),(2,20)代入得: ,
    解得 ,
    ∴乙的函数解析式为:y=20x﹣20 ②
    由①②得 ,
    ∴ ,
    故 ≤x≤2符合题意.
    故答案为0≤x≤2或≤x≤2.
    【点睛】
    此题考查函数的图象和二元一次方程组的解,解题关键在于看懂图中数据
    16、50
    【解析】
    试题分析:连结EF,如图,根据圆内接四边形的性质得∠A+∠BCD=180°,根据对顶角相等得∠BCD=∠ECF,则∠A+∠ECF=180°,根据三角形内角和定理得∠ECF+∠1+∠2=180°,所以∠1+∠2=∠A,再利用三角形内角和定理得到∠A+∠AEB+∠1+∠2+∠AFD=180°,则∠A+80°+∠A=180°,然后解方程即可.
    试题解析:连结EF,如图,

    ∵四边形ABCD内接于⊙O,
    ∴∠A+∠BCD=180°,
    而∠BCD=∠ECF,
    ∴∠A+∠ECF=180°,
    ∵∠ECF+∠1+∠2=180°,
    ∴∠1+∠2=∠A,
    ∵∠A+∠AEF+∠AFE=180°,
    即∠A+∠AEB+∠1+∠2+∠AFD=180°,
    ∴∠A+80°+∠A=180°,
    ∴∠A=50°.
    考点:圆内接四边形的性质.

    三、解答题(共8题,共72分)
    17、绳索长为20尺,竿长为15尺.
    【解析】
    设索长为x尺,竿子长为y尺,根据“索比竿子长一托,对折索子来量竿,却比竿子短一托”,即可得出关于x、y的二元一次方程组,解之即可得出结论.
    【详解】
    设绳索长、竿长分别为尺,尺,
    依题意得:
    解得:,.
    答:绳索长为20尺,竿长为15尺.
    【点睛】
    本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.
    18、(1),,.(2)6
    【解析】
    (1)用代入法可求解,用待定系数法求解;(2)延长,交于点,则.根据求解.
    【详解】
    解:(1)∵点在上,
    ∴,
    ∵点在上,且,
    ∴.
    ∵过,两点,
    ∴,
    解得,
    ∴,,.
    (2)如图,延长,交于点,则.
    ∵轴,轴,
    ∴,,
    ∴,,



    .
    ∴四边形的面积为6.

    【点睛】
    考核知识点:反比例函数和一次函数的综合运用.数形结合分析问题是关键.
    19、(1)此人所在P的铅直高度约为14.3米;(2)从P到点B的路程约为17.1米
    【解析】
    分析:(1)过P作PF⊥BD于F,作PE⊥AB于E,设PF=5x,在Rt△ABC中求出AB,用含x的式子表示出AE,EP,由tan∠APE,求得x即可;(2)在Rt△CPF中,求出CP的长.
    详解:过P作PF⊥BD于F,作PE⊥AB于E,
    ∵斜坡的坡度i=5:1,
    设PF=5x,CF=1x,
    ∵四边形BFPE为矩形,
    ∴BF=PEPF=BE.
    在RT△ABC中,BC=90,
    tan∠ACB=,
    ∴AB=tan63.4°×BC≈2×90=180,
    ∴AE=AB-BE=AB-PF=180-5x,
    EP=BC+CF≈90+10x.
    在RT△AEP中,
    tan∠APE=,
    ∴x=,
    ∴PF=5x=.
    答:此人所在P的铅直高度约为14.3米.

    由(1)得CP=13x,
    ∴CP=13×37.1,BC+CP=90+37.1=17.1.
    答:从P到点B的路程约为17.1米.
    点睛:本题考查了解直角三角形的应用,关键是正确的画出与实际问题相符合的几何图形,找出图形中的相关线段或角的实际意义及所要解决的问题,构造直角三角形,用勾股定理或三角函数求相应的线段长.
    20、 (1) ac<3;(3)①a=1;②m>或m<.
    【解析】
    (1)设A (p,q).则B (-p,-q),把A、B坐标代入解析式可得方程组即可得到结论;
    (3)由c=-1,得到p3=,a>3,且C(3,-1),求得p=±,①根据三角形的面积公式列方程即可得到结果;②由①可知:抛物线解析式为y=x3-3mx-1,根据M(-1,1)、N(3,4).得到这些MN的解析式y=x+(-1≤x≤3),联立方程组得到x3-3mx-1=x+,故问题转化为:方程x3-(3m+)x-=3在-1≤x≤3内只有一个解,建立新的二次函数:y=x3-(3m+)x-,根据题意得到(Ⅰ)若-1≤x1<3且x3>3,(Ⅱ)若x1<-1且-1<x3≤3:列方程组即可得到结论.
    【详解】
    (1)设A (p,q).则B (-p,-q),
    把A、B坐标代入解析式可得:

    ∴3ap3+3c=3.即p3=−,
    ∴−≥3,
    ∵ac≠3,
    ∴−>3,
    ∴ac<3;
    (3)∵c=-1,
    ∴p3=,a>3,且C(3,-1),
    ∴p=±,
    ①S△ABC=×3×1=1,
    ∴a=1;
    ②由①可知:抛物线解析式为y=x3-3mx-1,
    ∵M(-1,1)、N(3,4).
    ∴MN:y=x+(-1≤x≤3),
    依题,只需联立在-1≤x≤3内只有一个解即可,
    ∴x3-3mx-1=x+,
    故问题转化为:方程x3-(3m+)x-=3在-1≤x≤3内只有一个解,
    建立新的二次函数:y=x3-(3m+)x-,
    ∵△=(3m+)3+11>3且c=-<3,
    ∴抛物线y=x3−(3m+)x−与x轴有两个交点,且交y轴于负半轴.
    不妨设方程x3−(3m+)x−=3的两根分别为x1,x3.(x1<x3)
    则x1+x3=3m+,x1x3=−
    ∵方程x3−(3m+)x−=3在-1≤x≤3内只有一个解.
    故分两种情况讨论:
    (Ⅰ)若-1≤x1<3且x3>3:则
    .即:,
    可得:m>.
    (Ⅱ)若x1<-1且-1<x3≤3:则
    .即:,
    可得:m<,
    综上所述,m>或m<.
    【点睛】
    本题考查了待定系数法求二次函数的解析式,一元二次方程根与系数的关系,三角形面积公式,正确的理解题意是解题的关键.
    21、(1)AB长为5;(2)圆P与直线DC相切,理由详见解析.
    【解析】
    (1)过A作AE⊥BC于E,根据矩形的性质得到CE=AD=1,AE=CD=3,根据勾股定理即可得到结论;
    (2)过P作PF⊥BQ于F,根据相似三角形的性质得到PB=,得到PA=AB-PB=,过P作PG⊥CD于G交AE于M,根据相似三角形的性质得到PM=,根据切线的判定定理即可得到结论.
    【详解】
    (1)过A作AE⊥BC于E,
    则四边形AECD是矩形,
    ∴CE=AD=1,AE=CD=3,
    ∵AB=BC,
    ∴BE=AB-1,
    在Rt△ABE中,∵AB2=AE2+BE2,
    ∴AB2=32+(AB-1)2,
    解得:AB=5;
    (2)过P作PF⊥BQ于F,
    ∴BF=BQ=,
    ∴△PBF∽△ABE,
    ∴,
    ∴,
    ∴PB=,
    ∴PA=AB-PB=,
    过P作PG⊥CD于G交AE于M,
    ∴GM=AD=1,
    ∵DC⊥BC
    ∴PG∥BC
    ∴△APM∽△ABE,
    ∴,
    ∴,
    ∴PM=,
    ∴PG=PM+MG==PB,
    ∴圆P与直线DC相切.

    【点睛】
    本题考查了直线与圆的位置关系,矩形的判定和性质,相似三角形的判定和性质,正确的作出辅助线是解题的关键.
    22、(1)y=;(2);(3)<x<1.
    【解析】
    (1)先利用矩形的性质确定C点坐标(1,4),再确定A点坐标为(3,2),根据反比例函数图象上点的坐标特征得到k1=1,即反比例函数解析式为y=;(2)利用反比例函数解析式确定F点的坐标为(1,1),E点坐标为(,4),然后根据△OEF的面积=S矩形BCDO﹣S△ODE﹣S△OBF﹣S△CEF进行计算;
    (3)观察函数图象得到当<x<1时,一次函数图象都在反比例函数图象上方,即k2x+b>.
    【详解】
    (1)∵四边形DOBC是矩形,且点C的坐标为(1,4),
    ∴OB=1,OD=4,
    ∵点A为线段OC的中点,
    ∴A点坐标为(3,2),
    ∴k1=3×2=1,
    ∴反比例函数解析式为y=;
    (2)把x=1代入y=得y=1,则F点的坐标为(1,1);
    把y=4代入y=得x=,则E点坐标为(,4),
    △OEF的面积=S矩形BCDO﹣S△ODE﹣S△OBF﹣S△CEF
    =4×1﹣×4×﹣×1×1﹣×(1﹣)×(4﹣1)
    =;
    (3)由图象得:不等式不等式k2x+b>的解集为<x<1.
    【点睛】
    本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解即可.
    23、(1);(2)点P的坐标是(0,4)或(0,-4).
    【解析】
    (1)求出OA=BC=2,将y=2代入求出x=2,得出M的坐标,把M的坐标代入反比例函数的解析式即可求出答案.
    (2)求出四边形BMON的面积,求出OP的值,即可求出P的坐标.
    【详解】
    (1)∵B(4,2),四边形OABC是矩形,
    ∴OA=BC=2.
    将y=2代入3得:x=2,∴M(2,2).
    把M的坐标代入得:k=4,
    ∴反比例函数的解析式是;
    (2).
    ∵△OPM的面积与四边形BMON的面积相等,
    ∴.
    ∵AM=2,
    ∴OP=4.
    ∴点P的坐标是(0,4)或(0,-4).
    24、(1)见解析;(2)四边形BFGN是菱形,理由见解析.
    【解析】
    (1)过F作FH⊥BE于点H,可证明四边形BCFH为矩形,可得到BH=CF,且H为BE中点,可得BE=2CF;
    (2)由条件可证明△ABN≌△HFE,可得BN=EF,可得到BN=GF,且BN∥FG,可证得四边形BFGN为菱形.
    【详解】
    (1)证明:过F作FH⊥BE于H点,

    在四边形BHFC中,∠BHF=∠CBH=∠BCF=90°,
    所以四边形BHFC为矩形,
    ∴CF=BH,
    ∵BF=EF,FH⊥BE,
    ∴H为BE中点,
    ∴BE=2BH,
    ∴BE=2CF;
    (2)四边形BFGN是菱形.
    证明:
    ∵将线段EF绕点F顺时针旋转90°得FG,
    ∴EF=GF,∠GFE=90°,
    ∴∠EFH+∠BFH+∠GFB=90°
    ∵BN∥FG,
    ∴∠NBF+∠GFB=180°,
    ∴∠NBA+∠ABC+∠CBF+∠GFB=180°,
    ∵∠ABC=90°,
    ∴∠NBA+∠CBF+∠GFB=180°−90°=90°,
    由BHFC是矩形可得BC∥HF,∴∠BFH=∠CBF,
    ∴∠EFH=90°−∠GFB−∠BFH=90°−∠GFB−∠CBF=∠NBA,
    由BHFC是矩形可得HF=BC,
    ∵BC=AB,∴HF=AB,
    在△ABN和△HFE中,,
    ∴△ABN≌△HFE,
    ∴NB=EF,
    ∵EF=GF,
    ∴NB=GF,
    又∵NB∥GF,
    ∴NBFG是平行四边形,
    ∵EF=BF,∴NB=BF,
    ∴平行四边NBFG是菱形.
    点睛:本题主要考查正方形的性质及全等三角形的判定和性质,矩形的判定与性质,菱形的判定等,作出辅助线是解决(1)的关键.在(2)中证得△ABN≌△HFE是解题的关键.

    相关试卷

    2023年山东省日照市新营中学中考三模数学试题(含解析): 这是一份2023年山东省日照市新营中学中考三模数学试题(含解析),共31页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。

    2023年山东省日照市东港区新营中学中考数学二模试卷(含解析): 这是一份2023年山东省日照市东港区新营中学中考数学二模试卷(含解析),共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023年山东省日照市新营中学中考二模数学试题: 这是一份2023年山东省日照市新营中学中考二模数学试题,共29页。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map