|试卷下载
终身会员
搜索
    上传资料 赚现金
    山东省临朐县2022年中考数学仿真试卷含解析
    立即下载
    加入资料篮
    山东省临朐县2022年中考数学仿真试卷含解析01
    山东省临朐县2022年中考数学仿真试卷含解析02
    山东省临朐县2022年中考数学仿真试卷含解析03
    还剩22页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    山东省临朐县2022年中考数学仿真试卷含解析

    展开
    这是一份山东省临朐县2022年中考数学仿真试卷含解析,共25页。试卷主要包含了下列方程中,两根之和为2的是,若点A,2cs 30°的值等于等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项:
    1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
    2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
    3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
    4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

    一、选择题(共10小题,每小题3分,共30分)
    1.已知函数y=(k-1)x2-4x+4的图象与x轴只有一个交点,则k的取值范围是( )
    A.k≤2且k≠1 B.k<2且k≠1
    C.k=2 D.k=2或1
    2.半径为3的圆中,一条弦长为4,则圆心到这条弦的距离是(  )
    A.3 B.4 C. D.
    3.计算a•a2的结果是(  )
    A.a B.a2 C.2a2 D.a3
    4.的绝对值是(  )
    A.﹣4 B. C.4 D.0.4
    5.下列方程中,两根之和为2的是(  )
    A.x2+2x﹣3=0 B.x2﹣2x﹣3=0 C.x2﹣2x+3=0 D.4x2﹣2x﹣3=0
    6.如图所示是由相同的小正方体搭成的几何体的俯视图,小正方形中的数字表示该位置上 小正方体的个数,那么该几何体的主视图是( )

    A. B. C. D.
    7.若点A(1+m,1﹣n)与点B(﹣3,2)关于y轴对称,则m+n的值是(  )
    A.﹣5 B.﹣3 C.3 D.1
    8.2cos 30°的值等于(  )
    A.1 B. C. D.2
    9.在下列四个新能源汽车车标的设计图中,属于中心对称图形的是( )
    A. B. C. D.
    10.若关于的一元二次方程有两个不相等的实数根,则一次函数
    的图象可能是:
    A. B. C. D.
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.如图,在直角坐标系中,点A(2,0),点B (0,1),过点A的直线l垂直于线段AB,点P是直线l上一动点,过点P作PC⊥x轴,垂足为C,把△ACP沿AP翻折,使点C落在点D处,若以A,D,P为顶点的三角形与△ABP相似,则所有满足此条件的点P的坐标为___________________________.

    12.在比例尺为1:50000的地图上,量得甲、乙两地的距离为12厘米,则甲、乙两地的实际距离是______千米.
    13.如图,在3×3的正方形网格中,点A,B,C,D,E,F,G都是格点,从C,D,E,F,G五个点中任意取一点,以所取点及AB为顶点画三角形,所画三角形时等腰三角形的概率是_____.

    14.甲、乙两个机器人检测零件,甲比乙每小时多检测20个,甲检测300个比乙检测200个所用的时间少,若设甲每小时检测个,则根据题意,可列出方程:__________.
    15.如图,利用图形面积的不同表示方法,能够得到的代数恒等式是____________________(写出一个即可).

    16.函数y=的自变量x的取值范围为____________.
    三、解答题(共8题,共72分)
    17.(8分)计算:2﹣1+|﹣|++2cos30°
    18.(8分)如图,Rt△ABC,CA⊥BC,AC=4,在AB边上取一点D,使AD=BC,作AD的垂直平分线,交AC边于点F,交以AB为直径的⊙O于G,H,设BC=x.
    (1)求证:四边形AGDH为菱形;
    (2)若EF=y,求y关于x的函数关系式;
    (3)连结OF,CG.
    ①若△AOF为等腰三角形,求⊙O的面积;
    ②若BC=3,则CG+9=______.(直接写出答案).

    19.(8分)甲、乙两名队员的10次射击训练,成绩分别被制成下列两个统计图.

    并整理分析数据如下表:

    平均成绩/环
    中位数/环
    众数/环
    方差


    7
    7
    1.2

    7

    8

    (1)求,,的值;分别运用表中的四个统计量,简要分析这两名队员的射击训练成绩.若选派其中一名参赛,你认为应选哪名队员?
    20.(8分)某校要求八年级同学在课外活动中,必须在五项球类(篮球、足球、排球、羽毛球、乒乓球)活动中任选一项(只能选一项)参加训练,为了了解八年级学生参加球类活动的整体情况,现以八年级(2)班作为样本,对该班学生参加球类活动的情况进行统计,并绘制了如图所示的不完整统计表和扇形统计图:
    八年级(2)班参加球类活动人数情况统计表
    项目
    篮球
    足球
    乒乓球
    排球
    羽毛球
    人数
    a
    6
    5
    7
    6
    八年级(2)班学生参加球类活动人数情况扇形统计图

    根据图中提供的信息,解答下列问题:a=  ,b=  .该校八年级学生共有600人,则该年级参加足球活动的人数约  人;该班参加乒乓球活动的5位同学中,有3位男同学(A,B,C)和2位女同学(D,E),现准备从中选取两名同学组成双打组合,用树状图或列表法求恰好选出一男一女组成混合双打组合的概率.
    21.(8分)如图,在△ABC中,点D,E分别在边AB,AC上,∠AED=∠B,射线AG分别交线段DE,BC于点F,G,且.求证:△ADF∽△ACG;若,求的值.

    22.(10分)在平面直角坐标系中,已知抛物线经过A(﹣4,0),B(0,﹣4),C(2,0)三点.
    (1)求抛物线解析式;
    (2)若点M为第三象限内抛物线上一动点,点M的横坐标为m,△MOA的面积为S.求S关于m的函数关系式,并求出当m为何值时,S有最大值,这个最大值是多少?
    (3)若点Q是直线y=﹣x上的动点,过Q做y轴的平行线交抛物线于点P,判断有几个Q能使以点P,Q,B,O为顶点的四边形是平行四边形的点,直接写出相应的点Q的坐标.

    23.(12分)(问题情境)
    张老师给爱好学习的小军和小俊提出这样的一个问题:如图1,在△ABC中,AB=AC,点P为边BC上任一点,过点P作PD⊥AB,PE⊥AC,垂足分别为D,E,过点C作CF⊥AB,垂足为F,求证:PD+PE=CF.

    小军的证明思路是:如图2,连接AP,由△ABP与△ACP面积之和等于△ABC的面积可以证得:PD+PE=CF.
    小俊的证明思路是:如图2,过点P作PG⊥CF,垂足为G,可以证得:PD=GF,PE=CG,则PD+PE=CF.
    [变式探究]
    如图3,当点P在BC延长线上时,其余条件不变,求证:PD﹣PE=CF;
    请运用上述解答中所积累的经验和方法完成下列两题:
    [结论运用]
    如图4,将矩形ABCD沿EF折叠,使点D落在点B上,点C落在点C′处,点P为折痕EF上的任一点,过点P作PG⊥BE、PH⊥BC,垂足分别为G、H,若AD=8,CF=3,求PG+PH的值;
    [迁移拓展]
    图5是一个航模的截面示意图.在四边形ABCD中,E为AB边上的一点,ED⊥AD,EC⊥CB,垂足分别为D、C,且AD•CE=DE•BC,AB=2dm,AD=3dm,BD=dm.M、N分别为AE、BE的中点,连接DM、CN,求△DEM与△CEN的周长之和.
    24.化简分式,并从0、1、2、3这四个数中取一个合适的数作为x的值代入求值.



    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、D
    【解析】
    当k+1=0时,函数为一次函数必与x轴有一个交点;当k+1≠0时,函数为二次函数,根据条件可知其判别式为0,可求得k的值.
    【详解】
    当k-1=0,即k=1时,函数为y=-4x+4,与x轴只有一个交点;
    当k-1≠0,即k≠1时,由函数与x轴只有一个交点可知,
    ∴△=(-4)2-4(k-1)×4=0,
    解得k=2,
    综上可知k的值为1或2,
    故选D.
    【点睛】
    本题主要考查函数与x轴的交点,掌握二次函数与x轴只有一个交点的条件是解题的关键,解决本题时注意考虑一次函数和二次函数两种情况.
    2、C
    【解析】
    如图所示:
    过点O作OD⊥AB于点D,

    ∵OB=3,AB=4,OD⊥AB,
    ∴BD=AB=×4=2,
    在Rt△BOD中,OD=.
    故选C.
    3、D
    【解析】
    a·a2= a3.
    故选D.
    4、B
    【解析】
    分析:根据绝对值的性质,一个负数的绝对值等于其相反数,可有相反数的意义求解.
    详解:因为-的相反数为
    所以-的绝对值为.
    故选:B
    点睛:此题主要考查了求一个数的绝对值,关键是明确绝对值的性质,一个正数的绝对值等于本身,0的绝对值是0,一个负数的绝对值为其相反数.
    5、B
    【解析】
    由根与系数的关系逐项判断各项方程的两根之和即可.
    【详解】
    在方程x2+2x-3=0中,两根之和等于-2,故A不符合题意;
    在方程x2-2x-3=0中,两根之和等于2,故B符合题意;
    在方程x2-2x+3=0中,△=(-2)2-4×3=-8<0,则该方程无实数根,故C不符合题意;
    在方程4x2-2x-3=0中,两根之和等于-,故D不符合题意,
    故选B.
    【点睛】
    本题主要考查根与系数的关系,掌握一元二次方程的两根之和等于-、两根之积等于是解题的关键.
    6、C
    【解析】
    A、B、D不是该几何体的视图,C是主视图,故选C.
    【点睛】主视图是由前面看到的图形,俯视图是由上面看到的图形,左视图是由左面看到的图形,能看到的线画实线,看不到的线画虚线.
    7、D
    【解析】【分析】根据关于y轴的对称点的坐标特点:横坐标互为相反数,纵坐标不变,据此求出m、n的值,代入计算可得.
    【详解】∵点A(1+m,1﹣n)与点B(﹣3,2)关于y轴对称,
    ∴1+m=3、1﹣n=2,
    解得:m=2、n=﹣1,
    所以m+n=2﹣1=1,
    故选D.
    【点睛】本题考查了关于y轴对称的点,熟练掌握关于y轴对称的两点的横坐标互为相反数,纵坐标不变是解题的关键.
    8、C
    【解析】
    分析:根据30°角的三角函数值代入计算即可.
    详解:2cos30°=2×=.
    故选C.
    点睛:此题主要考查了特殊角的三角函数值的应用,熟记30°、45°、60°角的三角函数值是解题关键.
    9、D
    【解析】
    根据中心对称图形的概念求解.
    【详解】
    解:A.不是中心对称图形,本选项错误;
    B.不是中心对称图形,本选项错误;
    C.不是中心对称图形,本选项错误;
    D.是中心对称图形,本选项正确.
    故选D.
    【点睛】
    本题主要考查了中心对称图形的概念.中心对称图形是要寻找对称中心,旋转180度后两部分重合.
    10、B
    【解析】
    由方程有两个不相等的实数根,
    可得,
    解得,即异号,
    当时,一次函数的图象过一三四象限,
    当时,一次函数的图象过一二四象限,故答案选B.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、
    【解析】
    ∵点A(2,0),点B (0,1),
    ∴OA=2,OB=1, .
    ∵l⊥AB,
    ∴∠PAC+OAB=90°.
    ∵∠OBA+∠OAB=90°,
    ∴∠OBA=∠PAC.
    ∵∠AOB=∠ACP,
    ∴△ABO∽△PAC,
    .
    设AC=m,PC=2m, .
    当点P在x轴的上方时,
    由 得, , ,
    ,PC=1,
    ,

    由 得, , ∴m=2,
    ∴AC=2,PC=4,
    ∴OC=2+2=4,
    ∴P(4,4).
    当点P在x轴的下方时,

    由 得, , ,
    ,PC=1,
    ,

    由 得, , ∴m=2,
    ∴AC=2,PC=4,
    ∴OC=2-2=0,
    ∴P(0,4).
    所以P点坐标为或(4,4)或或(0,4)
    【点睛】本题考察了相似三角形的判定,相似三角形的性质,平面直角坐标系点的坐标及分类讨论的思想.在利用相似三角形的性质列比例式时,要找好对应边,如果对应边不确定,要分类讨论.因点P在x轴上方和下方得到的结果也不一样,所以要分两种情况求解.
    请在此填写本题解析!
    12、
    【解析】
    本题可根据比例线段进行求解.
    【详解】
    解:因为在比例尺为1:50000的地图上甲,乙两地的距离12cm,所以,甲、乙的实际距离x满足12:x=1:50000,即x=12=600000cm=6km.
    故答案为6.
    【点睛】
    本题主要考查比例尺和比例线段的相关知识.
    13、.
    【解析】
    找出从C,D,E,F,G五个点中任意取一点组成等腰三角形的个数,再根据概率公式即可得出结论.
    【详解】
    ∵从C,D,E,F,G五个点中任意取一点共有5种情况,其中A、B、C;A、B、F两种取法,可使这三定组成等腰三角形,
    ∴所画三角形时等腰三角形的概率是,
    故答案是:.
    【点睛】
    考查的是概率公式,熟记随机事件A的概率P(A)=事件A可能出现的结果数与所有可能出现的结果数的商是解答此题的关键.
    14、
    【解析】
    【分析】若设甲每小时检测个,检测时间为,乙每小时检测个,检测时间为,根据甲检测300个比乙检测200个所用的时间少,列出方程即可.
    【解答】若设甲每小时检测个,检测时间为,乙每小时检测个,检测时间为,根据题意有:
    .
    故答案为
    【点评】考查分式方程的应用,解题的关键是找出题目中的等量关系.
    15、(a+b)2=a2+2ab+b2
    【解析】
    完全平方公式的几何背景,即乘法公式的几何验证.此类题型可从整体和部分两个方面分析问题.本题从整体来看,整个图形为一个正方形,找到边长,表示出面积,从部分来看,该图形的面积可用两个小正方形的面积加上2个矩形的面积表示,从不同角度思考,但是同一图形,所以它们面积相等,列出等式.
    【详解】
    解:

    ,




    【点睛】
    此题考查了完全平方公式的几何意义,从不同角度思考,用不同的方法表示相应的面积是解题的关键.
    16、x≥-1
    【解析】
    试题分析:由题意得,x+1≥0,解得x≥﹣1.故答案为x≥﹣1.
    考点:函数自变量的取值范围.

    三、解答题(共8题,共72分)
    17、+4.
    【解析】
    原式利用负整数指数幂法则,二次根式性质,以及特殊角的三角函数值计算即可求出值.
    【详解】
    原式=++2+2×=+4.
    【点睛】
    本题考查了实数的运算,涉及了负整数指数幂、特殊角的三角函数值、二次根式的化简等,熟练掌握各运算的运算法则是解本题的关键.
    18、(1)证明见解析;(2)y=x2(x>0);(3)①π或8π或(2+2)π;②4.
    【解析】
    (1)根据线段的垂直平分线的性质以及垂径定理证明AG=DG=DH=AH即可;
    (2)只要证明△AEF∽△ACB,可得解决问题;
    (3)①分三种情形分别求解即可解决问题;
    ②只要证明△CFG∽△HFA,可得=,求出相应的线段即可解决问题;
    【详解】
    (1)证明:∵GH垂直平分线段AD,
    ∴HA=HD,GA=GD,
    ∵AB是直径,AB⊥GH,
    ∴EG=EH,
    ∴DG=DH,
    ∴AG=DG=DH=AH,
    ∴四边形AGDH是菱形.
    (2)解:∵AB是直径,
    ∴∠ACB=90°,
    ∵AE⊥EF,
    ∴∠AEF=∠ACB=90°,
    ∵∠EAF=∠CAB,
    ∴△AEF∽△ACB,
    ∴,
    ∴,
    ∴y=x2(x>0).
    (3)①解:如图1中,连接DF.

    ∵GH垂直平分线段AD,
    ∴FA=FD,
    ∴当点D与O重合时,△AOF是等腰三角形,此时AB=2BC,∠CAB=30°,
    ∴AB=,
    ∴⊙O的面积为π.
    如图2中,当AF=AO时,

    ∵AB==,
    ∴OA=,
    ∵AF==,
    ∴=,
    解得x=4(负根已经舍弃),
    ∴AB=,
    ∴⊙O的面积为8π.
    如图2﹣1中,当点C与点F重合时,设AE=x,则BC=AD=2x,AB=,

    ∵△ACE∽△ABC,
    ∴AC2=AE•AB,
    ∴16=x•,
    解得x2=2﹣2(负根已经舍弃),
    ∴AB2=16+4x2=8+8,
    ∴⊙O的面积=π••AB2=(2+2)π
    综上所述,满足条件的⊙O的面积为π或8π或(2+2)π;
    ②如图3中,连接CG.

    ∵AC=4,BC=3,∠ACB=90°,
    ∴AB=5,
    ∴OH=OA=,
    ∴AE=,
    ∴OE=OA﹣AE=1,
    ∴EG=EH==,
    ∵EF=x2=,
    ∴FG=﹣,AF==,AH==,
    ∵∠CFG=∠AFH,∠FCG=∠AHF,
    ∴△CFG∽△HFA,
    ∴,
    ∴,
    ∴CG=﹣,
    ∴CG+9=4.
    故答案为4.
    【点睛】
    本题考查圆综合题、相似三角形的判定和性质、垂径定理、线段的垂直平分线的性质、菱形的判定和性质、勾股定理、解直角三角形等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,学会用分类讨论的思想思考问题.
    19、(1)a=7,b=7.5,c=4.2;(2)见解析.
    【解析】
    (1)利用平均数的计算公式直接计算平均分即可;将乙的成绩从小到大重新排列,用中位数的定义直接写出中位数即可;根据乙的平均数利用方差的公式计算即可;
    (2)结合平均数和中位数、众数、方差三方面的特点进行分析.
    【详解】
    (1)甲的平均成绩a==7(环),
    ∵乙射击的成绩从小到大重新排列为:3、4、6、7、7、8、8、8、9、10,
    ∴乙射击成绩的中位数b==7.5(环),
    其方差c=×[(3-7)2+(4-7)2+(6-7)2+2×(7-7)2+3×(8-7)2+(9-7)2+(10-7)2]
    =×(16+9+1+3+4+9)
    =4.2;
    (2)从平均成绩看甲、乙二人的成绩相等均为7环,从中位数看甲射中7环以上的次数小于乙,从众数看甲射中7环的次数最多而乙射中8环的次数最多,从方差看甲的成绩比乙的成绩稳定;
    综合以上各因素,若选派一名队员参加比赛的话,可选择乙参赛,因为乙获得高分的可能更大.
    【点睛】
    本题考查的是条形统计图和方差、平均数、中位数、众数的综合运用.熟练掌握平均数的计算,理解方差的概念,能够根据计算的数据进行综合分析.
    20、 (1)a=16,b=17.5(2)90(3)
    【解析】
    试题分析:(1)首先求得总人数,然后根据百分比的定义求解;
    (2)利用总数乘以对应的百分比即可求解;
    (3)利用列举法,根据概率公式即可求解.
    试题解析:(1)a=5÷12.5%×40%=16,5÷12.5%=7÷b%,∴b=17.5,故答案为16,17.5;
    (2)600×[6÷(5÷12.5%)]=90(人),故答案为90;
    (3)如图,∵共有20种等可能的结果,两名主持人恰为一男一女的有12种情况,∴则P(恰好选到一男一女)==.

    考点:列表法与树状图法;用样本估计总体;扇形统计图.
    21、 (1)证明见解析;(2)1.
    【解析】
    (1)欲证明△ADF∽△ACG,由可知,只要证明∠ADF=∠C即可.
    (2)利用相似三角形的性质得到,由此即可证明.
    【解答】(1)证明:∵∠AED=∠B,∠DAE=∠DAE,∴∠ADF=∠C,
    ∵,∴△ADF∽△ACG.
    (2)解:∵△ADF∽△ACG,∴,
    又∵,∴,
    ∴1.
    22、(1)y=x2+x﹣4;(2)S关于m的函数关系式为S=﹣m2﹣2m+8,当m=﹣1时,S有最大值9;(3)Q坐标为(﹣4,4)或(﹣2+2,2﹣2)或(﹣2﹣2,2+2)时,使点P,Q,B,O为顶点的四边形是平行四边形.
    【解析】
    (1)设抛物线解析式为y= ax2 + bx + c,然后把点A、B、C的坐标代入函数解析式,利用待定系数法求解即可;
    (2)利用抛物线的解析式表示出点M的纵坐标,从而得到点M到x轴的距离,然后根据三角形面积公式表示并整理即可得解,根据抛物线的性质求出第三象限内二次函数的最值,然后即可得解;
    (3)利用直线与抛物线的解析式表示出点P、Q的坐标,然后求出PQ的长度,再根据平行四边形的对边相等列出算式,然后解关于x的一元二次方程即可得解.
    【详解】
    解:(1)设抛物线解析式为y=ax2+bx+c,
    ∵抛物线经过A(﹣4,0),B(0,﹣4),C(2,0),
    ∴,
    解得,
    ∴抛物线解析式为y=x2+x﹣4;
    (2)∵点M的横坐标为m,
    ∴点M的纵坐标为m2+m﹣4,
    又∵A(﹣4,0),
    ∴AO=0﹣(﹣4)=4,
    ∴S=×4×|m2+m﹣4|=﹣(m2+2m﹣8)=﹣m2﹣2m+8,
    ∵S=﹣(m2+2m﹣8)=﹣(m+1)2+9,点M为第三象限内抛物线上一动点,
    ∴当m=﹣1时,S有最大值,最大值为S=9;
    故答案为S关于m的函数关系式为S=﹣m2﹣2m+8,当m=﹣1时,S有最大值9;
    (3)∵点Q是直线y=﹣x上的动点,
    ∴设点Q的坐标为(a,﹣a),
    ∵点P在抛物线上,且PQ∥y轴,
    ∴点P的坐标为(a,a2+a﹣4),
    ∴PQ=﹣a﹣(a2+a﹣4)=﹣a2﹣2a+4,
    又∵OB=0﹣(﹣4)=4,
    以点P,Q,B,O为顶点的四边形是平行四边形,
    ∴|PQ|=OB,
    即|﹣a2﹣2a+4|=4,
    ①﹣a2﹣2a+4=4时,整理得,a2+4a=0,
    解得a=0(舍去)或a=﹣4,
    ﹣a=4,
    所以点Q坐标为(﹣4,4),
    ②﹣a2﹣2a+4=﹣4时,整理得,a2+4a﹣16=0,
    解得a=﹣2±2,
    所以点Q的坐标为(﹣2+2,2﹣2)或(﹣2﹣2,2+2),
    综上所述,Q坐标为(﹣4,4)或(﹣2+2,2﹣2)或(﹣2﹣2,2+2)时,使点P,Q,B,O为顶点的四边形是平行四边形.
    【点睛】
    本题是对二次函数的综合考查有待定系数法求二次函数解析式,三角形的面积,二次函数的最值问题,平行四边形的对边相等的性质,平面直角坐标系中两点间的距离的表示,综合性较强,但难度不大,仔细分析便不难求解.
    23、小军的证明:见解析;小俊的证明:见解析;[变式探究]见解析;[结论运用]PG+PH的值为1;[迁移拓展](6+2)dm
    【解析】
    小军的证明:连接AP,利用面积法即可证得;
    小俊的证明:过点P作PG⊥CF,先证明四边形PDFG为矩形,再证明△PGC≌△CEP,即可得到答案;
    [变式探究]小军的证明思路:连接AP,根据S△ABC=S△ABP﹣S△ACP,即可得到答案;
    小俊的证明思路:过点C,作CG⊥DP,先证明四边形CFDG是矩形,再证明△CGP≌△CEP即可得到答案;
    [结论运用] 过点E作EQ⊥BC,先根据矩形的性质求出BF,根据翻折及勾股定理求出DC,证得四边形EQCD是矩形,得出BE=BF即可得到答案;
    [迁移拓展]延长AD,BC交于点F,作BH⊥AF,证明△ADE∽△BCE得到FA=FB,设DH=x,利用勾股定理求出x得到BH=6,再根据∠ADE=∠BCE=90°,且M,N分别为AE,BE的中点即可得到答案.
    【详解】
    小军的证明:
    连接AP,如图②

    ∵PD⊥AB,PE⊥AC,CF⊥AB,
    ∴S△ABC=S△ABP+S△ACP,
    ∴AB×CF=AB×PD+AC×PE,
    ∵AB=AC,
    ∴CF=PD+PE.
    小俊的证明:
    过点P作PG⊥CF,如图2,
    ∵PD⊥AB,CF⊥AB,PG⊥FC,
    ∴∠CFD=∠FDG=∠FGP=90°,
    ∴四边形PDFG为矩形,
    ∴DP=FG,∠DPG=90°,
    ∴∠CGP=90°,
    ∵PE⊥AC,
    ∴∠CEP=90°,
    ∴∠PGC=∠CEP,
    ∵∠BDP=∠DPG=90°,
    ∴PG∥AB,
    ∴∠GPC=∠B,
    ∵AB=AC,
    ∴∠B=∠ACB,
    ∴∠GPC=∠ECP,
    在△PGC和△CEP中

    ∴△PGC≌△CEP,
    ∴CG=PE,
    ∴CF=CG+FG=PE+PD;
    [变式探究]
    小军的证明思路:连接AP,如图③,

    ∵PD⊥AB,PE⊥AC,CF⊥AB,
    ∴S△ABC=S△ABP﹣S△ACP,
    ∴AB×CF=AB×PD﹣AC×PE,
    ∵AB=AC,
    ∴CF=PD﹣PE;
    小俊的证明思路:
    过点C,作CG⊥DP,如图③,
    ∵PD⊥AB,CF⊥AB,CG⊥DP,
    ∴∠CFD=∠FDG=∠DGC=90°,
    ∴CF=GD,∠DGC=90°,四边形CFDG是矩形,
    ∵PE⊥AC,
    ∴∠CEP=90°,
    ∴∠CGP=∠CEP,
    ∵CG⊥DP,AB⊥DP,
    ∴∠CGP=∠BDP=90°,
    ∴CG∥AB,
    ∴∠GCP=∠B,
    ∵AB=AC,
    ∴∠B=∠ACB,
    ∵∠ACB=∠PCE,
    ∴∠GCP=∠ECP,
    在△CGP和△CEP中,

    ∴△CGP≌△CEP,
    ∴PG=PE,
    ∴CF=DG=DP﹣PG=DP﹣PE.
    [结论运用]
    如图④

    过点E作EQ⊥BC,
    ∵四边形ABCD是矩形,
    ∴AD=BC,∠C=∠ADC=90°,
    ∵AD=8,CF=3,
    ∴BF=BC﹣CF=AD﹣CF=5,
    由折叠得DF=BF,∠BEF=∠DEF,
    ∴DF=5,
    ∵∠C=90°,
    ∴DC==1,
    ∵EQ⊥BC,∠C=∠ADC=90°,
    ∴∠EQC=90°=∠C=∠ADC,
    ∴四边形EQCD是矩形,
    ∴EQ=DC=1,
    ∵AD∥BC,
    ∴∠DEF=∠EFB,
    ∵∠BEF=∠DEF,
    ∴∠BEF=∠EFB,
    ∴BE=BF,
    由问题情景中的结论可得:PG+PH=EQ,
    ∴PG+PH=1.
    ∴PG+PH的值为1.
    [迁移拓展]
    延长AD,BC交于点F,作BH⊥AF,如图⑤,

    ∵AD×CE=DE×BC,
    ∴,
    ∵ED⊥AD,EC⊥CB,
    ∴∠ADE=∠BCE=90°,
    ∴△ADE∽△BCE,
    ∴∠A=∠CBE,
    ∴FA=FB,
    由问题情景中的结论可得:ED+EC=BH,
    设DH=x,
    ∴AH=AD+DH=3+x,
    ∵BH⊥AF,
    ∴∠BHA=90°,
    ∴BH2=BD2﹣DH2=AB2﹣AH2,
    ∵AB=2,AD=3,BD=,
    ∴()2﹣x2=(2)2﹣(3+x)2,
    ∴x=1,
    ∴BH2=BD2﹣DH2=37﹣1=36,
    ∴BH=6,
    ∴ED+EC=6,
    ∵∠ADE=∠BCE=90°,且M,N分别为AE,BE的中点,
    ∴DM=EM=AE,CN=EN=BE,
    ∴△DEM与△CEN的周长之和
    =DE+DM+EM+CN+EN+EC
    =DE+AE+BE+EC
    =DE+AB+EC
    =DE+EC+AB
    =6+2,
    ∴△DEM与△CEN的周长之和(6+2)dm.
    【点睛】
    此题是一道综合题,考查三角形全等的判定及性质,勾股定理,矩形的性质定理,三角形的相似的判定及性质定理,翻折的性质,根据题中小军和小俊的思路进行证明,故正确理解题意由此进行后面的证明是解题的关键.
    24、x取0时,为1 或x取1时,为2
    【解析】
    试题分析:利用分式的运算,先对分式化简单,再选择使分式有意义的数代入求值即可.
    试题解析:解:原式=[]
    =
    =
    = x+1,
    ∵x1-4≠0,x-2≠0,
    ∴x≠1且x≠-1且x≠2,
    当x=0时,原式=1.
    或当x=1时,原式=2.

    相关试卷

    2023年山东省威海市中考数学仿真试卷(含解析): 这是一份2023年山东省威海市中考数学仿真试卷(含解析),共28页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023年山东省潍坊市临朐县等五地中考数学一模试卷(含解析): 这是一份2023年山东省潍坊市临朐县等五地中考数学一模试卷(含解析),共29页。试卷主要包含了选择题,多选题,填空题,解答题等内容,欢迎下载使用。

    2023年山东省潍坊市临朐县等五地中考数学一模试卷(含解析): 这是一份2023年山东省潍坊市临朐县等五地中考数学一模试卷(含解析),共29页。试卷主要包含了选择题,多选题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map